Energy 308 (2024) 132840

Contents lists available at ScienceDirect

ENERSY

Energy

journal homepage: www.elsevier.com/locate/energy

A robust adapted Flexible Parallel Neural Network architecture for early
prediction of lithium battery lifespan
Lidang Jiang?, Zhuoxiang Li?, Changyan Hu ?, Junxiong Chen ", Qingsong Huang?, Ge He ®"

aSchool of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, PR China
b School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610023, Sichuan, PR China

ARTICLE INFO ABSTRACT

Keywords:

Neural networks

Lithium batteries

Interpretable machine learning
Deep learning

Early prediction of End of Life (EPEOL) is crucial for improving lithium battery efficiency and lifespan.
Traditional fixed-architecture neural networks often suffer from underfitting or overfitting due to diverse
data distributions. To address this, we propose the Flexible Parallel Neural Network (FPNN). This model
integrates modules like InceptionBlock, 3D CNN, 2D CNN, and dual-stream networks. By effectively extracting
electrochemical features from video-format data through the 3D CNN and achieving multi-scale feature
abstraction with InceptionBlock, FPNN ensures effective module coordination. The model can adaptively
adjust the number of InceptionBlocks to handle tasks of varying complexity. Experimental results on the MIT
dataset show that FPNN achieves MAPE values of 1.26%, 0.41%, 0.37%, 0.33%, 0.32%, 0.32%, 0.31%, 0.31%,
0.22%, and 0.34% using the first 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 cycle data, respectively. The
interpretability of FPNN is reflected in its structural design and flexible unit choices, providing a basis for model
interpretation. Comprising multiple modules, FPNN enables smooth feature extraction from electrochemical
data through collaborative interaction. The diverse branching structure of the flexible units allows the model
to capture features at different scales, learning richer information. Our approach offers a precise, adaptable,
and easy-to-understand solution for EPEOL, opening new possibilities in battery health monitoring.

1. Introduction models [7,8], equivalent circuit models [9,10], and electrochemical

models [11-13]. This method requires researchers to have a deep

Since Sony introduced the first commercial lithium-ion batteries
(LIBs) in 1991 [1], these batteries have been widely adopted in various
fields such as portable electronic devices and electric vehicles, owing
to their long service life and low self-discharge characteristics [2—
4]. The number of charging and discharging cycles experienced by a
battery until its capacity falls to 70%-80% of the initial capacity is
considered the battery’s End of Life (EOL) [5]. Given the long lifes-
pan characteristic of lithium batteries, using traditional experimental
methods to determine their lifespan is not only time-consuming but also
costly. Hence, accurately predicting the EOL using early operational
data of the battery, or Early Prediction of End of Life (EPEOL), becomes
particularly crucial. EPEOL technology can provide vital information
and guidance for product design improvements, safety enhancements,
maintenance strategy optimization, and cost-benefit analysis, making it
of great significance to battery manufacturers, engineers, and end users
alike.

The modeling approaches for EPEOL can broadly be categorized
into two main types: physics-based modeling and data-driven modeling.
Physics-based modeling includes semi-empirical models [6], empirical

* Corresponding author.

E-mail addresses: qshuang@scu.edu.cn (Q. Huang), hege@scu.edu.cn (G. He).

https://doi.org/10.1016/j.energy.2024.132840

understanding of the physical and chemical processes within batteries
and use mathematical models to predict the battery’s lifespan. Physics-
based modeling excels in explaining battery behavior and considering
the interactions among various influencing factors, thereby offering
advantages in model accuracy and interpretability. However, this ap-
proach often relies on extensive experimental data for parameter fitting
and model calibration, making the modeling process time-consuming
and the model structure complex. Moreover, the theoretical assump-
tions of physics-based models may not always be applicable in complex
real-world scenarios [14].

Compared to physical knowledge modeling, data-driven model-
ing [15], particularly machine learning (ML) [16] techniques, exhibit
remarkable advantages in terms of flexibility, adaptability, and scalabil-
ity. Various machine learning methods have been applied to the domain
of battery life prediction, such as using Support Vector Machines (SVM)
to identify batteries with lifespans that do not meet expectations [17],
and employing decision trees [18], SVM [19], and k-nearest neighbors
(KNN) [20] for classifying the lifespan of LFP/graphite batteries [21].

Received 4 April 2024; Received in revised form 27 July 2024; Accepted 14 August 2024

Available online 22 August 2024

0360-5442/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://www.elsevier.com/locate/energy
https://www.elsevier.com/locate/energy
mailto:qshuang@scu.edu.cn
mailto:hege@scu.edu.cn
https://doi.org/10.1016/j.energy.2024.132840
https://doi.org/10.1016/j.energy.2024.132840

L. Jiang et al.

Energy 308 (2024) 132840

Nomenclature
EOL End of life MAPE Mean absolute percentage error
LIBs Lithium-ion batteries RNN Recurrent neural network
EPEOL Early prediction of end of life CNN Convolutional neural network
ML Machine learning FPNN Flexible parallel neural network
SVM Support vector machine BMS Battery management system
KNN k-nearest neighbors NOI Number of inceptionblock
RUL Remaining useful life MAE Mean absolute error
EIS Electrochemical impedance spectroscopy RMSE Root mean squared error
GPR Gaussian process regression CC Constant current

Cv Constant voltage

Severson et al. [14] trained a simple linear model on the MIT battery
dataset, achieving a 9.1% accuracy in predicting remaining useful life
(RUL). Zhang et al. [22] constructed an Electrochemical Impedance
Spectroscopy (EIS) dataset, and attained high precision in RUL pre-
diction through Gaussian Process Regression (GPR). Yang et al. [23]
utilized a Gradient Boosting Regression Trees model, employing fea-
tures such as voltage, capacity, and temperature, to achieve a 7%
Mean Absolute Percentage Error (MAPE) in EPEOL tasks. Fei et al. [24]
developed a comprehensive machine learning framework that includes
feature extraction, feature selection, and a prediction module, wherein
the prediction module integrates various machine learning models such
as GPR, SVM, and Elastic Net. On data from the first 100 cycles in the
MIT dataset, SVM achieved the lowest MAPE of 8.0%. However, these
traditional machine learning algorithms often require manual selection
and design of features, a process that adds complexity to the machine
learning workflow.

With the continuous advancement in computing power, neural net-
work technologies, emblematic of deep learning [25], have shown
tremendous potential in predicting the lifespan of batteries [26]. The
capacity of lithium-ion batteries gradually declines with use, thereby
affecting their lifespan. Recurrent Neural Networks (RNN) [27] and
their variants [28-31] have been widely adopted due to their excellent
performance in processing time series data, especially in capturing
long-term dependencies within the data. However, these methods rely
on the continuity of battery data time series and cannot be parallelized,
leading to underutilization of existing computational resources during
model training and inference phases. This not only results in significant
computational resource wastage but also reduces the timeliness of
information retrieval. In the realm of sequence data processing, the
emergence of the Transformer model [32], capable of parallel com-
putations, has gradually led to the obsolescence of RNNs and their
derivatives. Yet, the Transformer model’s memory usage is directly
proportional to the length of battery sequence data, which can occupy
substantial memory in practical applications, limiting its widespread
use [33]. Meanwhile, Convolutional Neural Networks (CNN) not only
require less memory and have more relaxed hardware requirements
but also enable parallel computation. By preprocessing lithium battery
feature data into a format akin to images, two-dimensional CNNs can
efficiently extract important spatial features, thereby achieving higher
prediction accuracy [34-37]. On the other hand, converting battery
data into a format similar to videos and processing it with three-
dimensional CNNs can delve into the complex interactions among
parameters such as voltage, current, and temperature, enabling com-
prehensive analysis of electrochemical characteristics. Building on this
concept, Yang [38] proposed a hybrid CNN model that significantly
improved prediction accuracy, reducing the prediction error to 3.08%
using data from only 20 charging cycles.

However, different EPEOL tasks have unique data distributions,
requiring models of varying complexity to avoid underfitting or over-
fitting. While fixed-architecture models can fit electrochemical data,
simplistic models may miss complex relationships, and complex models

may overfit noise. Regularization techniques help, but finding opti-
mal hyperparameters is complex and time-consuming. In this paper,
we propose the Flexible Parallel Neural Network (FPNN), a neural
network model capable of rapidly and adaptively adjusting to suit
the complexity of different EPEOL tasks. The core of FPNN integrates
the Inception-ResNet-A [39], three-dimensional convolutional neural
network (3D CNN) [40], two-dimensional convolutional neural net-
work (2D CNN), and dual-stream networks [41]. After preprocessing,
each sample is presented in a format similar to videos, where the 3D
CNN merges time (depth, i.e., charging capacity index) and spatial
(channel, i.e., voltage/current/temperature) features to extract primary
features. These primary features are then abstracted at a higher level
through InceptionBlock (i.e., the Inception-ResNet-A module), forming
multi-scale features. By stacking different InceptionBlocks with residual
connections, forming InceptionBlocks, the model further enhances its
capability to extract electrochemical features. The model automatically
learns the number of InceptionBlocks, allowing FPNN to flexibly ad-
just its complexity to suit different EPEOL tasks. Significantly, this
study also pioneers an efficient one-stop training and inference al-
gorithm that, when coupled with FPNN, achieves flawless predictive
performance.

This paper’s main contributions are summarized as follows:

(1) Adaptability and Accuracy of FPNN: The FPNN model we pro-
pose demonstrates rapid and flexible adaptability to a variety of EPEOL
tasks and achieves outstanding prediction accuracy. Whether employ-
ing a fixed or variable architecture, FPNN consistently exhibits superior
performance.

(2) Interpretability of the Model: The advantages of FPNN primarily
lie in its well-designed overall architecture, the structure, and param-
eter selection of its flexible units. Comprising multiple modules that
work in synergy, FPNN can smoothly and progressively extract the re-
quired electrochemical features from electrochemical data. The flexible
units, implemented via 1 x 1 convolution kernels, can rapidly integrate
information across different channels, effectively consolidating diverse
data. Its varied branching structure also enables the model to capture
features at different scales, thus learning more enriched information.
This unique structural design not only enhances the model’s predictive
accuracy but also increases the transparency and interpretability of its
decision-making process.

(3) One-Stop Training and Inference Algorithm: This paper also
presents a one-stop training and inference algorithm suitable for EPEOL
tasks and other machine learning tasks.

The structure of the article is as follows: Section 2 provides a
detailed introduction to the MIT dataset, including its data sources,
types, and its importance and application methods in EPEOL tasks;
Section 3 describes the application process of FPNN in actual EPEOL
tasks, with special emphasis on data preprocessing steps and the de-
tailed design of the FPNN architecture. It introduces the process for
generating model input data, the various components of FPNN and their
synergistic working mechanism, as well as the one-stop training and
inference algorithm; Section 4 displays the experimental results and
provides an in-depth analysis, including performance evaluation of the



L. Jiang et al.

Energy 308 (2024) 132840

(a) 110g
=
&
Ea
g
= 0.99
Y
1y
£
'S 0.94
=} 3
)
0.88 500
Cycle number (Cycles)
1000 1000
(b) 3.6 - ) 37.8 1

324 0 03524 0
= T E
@
g0 2.8 - 500 2 £ 3274 500 2
= 2 3 2
2 .k N

2.4 A 250 & 30.2 250

201, T T T T 2.1 T T T T T 0

0.00 025 050 075 1.00 0.00 025 050 0.75 1.00
Charge capacity ratio Charge capacity ratio

Fig. 1. Provides a comprehensive analysis of lithium-ion battery performance: (a) Using the MIT dataset, it shows capacity fade trends with cycle numbers and an inset graph of
battery life distribution. (b) Displays voltage changes of the “b1c23” battery across charging cycles, with black circles highlighting voltage fluctuations. (c) Describes the “b1c23”
battery’s temperature variation during charging, reflecting thermal management at different stages.

FPNN model under different EPEOL tasks, comparative analysis with
other existing models, ablation experiments. And Section 5 analysis
of model interpretability; The paper concludes with a summary of its
contents.

2. Input data generation

The dataset used in this study, created by Severson et al. [14] in
2019, addresses the issue of rapid charging of batteries and is known
as the MIT dataset. This dataset encompasses 124 lithium iron phos-
phate/graphite batteries from the A123 Systems, tested in a constant
temperature environment of 30 °C, though the actual temperature may
fluctuate around 30 °C due to the internal electrochemical reactions
of the batteries. As shown in Fig. 1(a), the dataset records the nominal
capacity of the batteries as 1.1 Ah. A battery is considered to have failed
when its discharge capacity falls to 80% of its nominal capacity, and
the corresponding number of charge-discharge cycles is regarded as
the battery’s lifespan. The dataset primarily employs the “C1(Q1)-C2”
charging strategy, which involves initial constant current charging at
C1 until the charge reaches Q1 (State of Charge, SOC, %), followed by
constant current charging at C2 until the SOC reaches 80%, and finally,
charging under a 1C CC-CV (Constant Current-Constant Voltage) mode
until the cut-off voltage of 3.6 V, with the voltage lower limit set at
2.0 V. By adjusting the values of C1, C2, and Q1, 72 different charging
modes are simulated to mimic the varied charging environments in the
real world.

In real-world scenarios, the discharge behavior of batteries varies,
whereas the charging process is relatively consistent. Based on this
observation, our study selects only charging data as the model input
to better align with practical application requirements. Within the
MIT dataset, there is a mapping relationship between the variation
in battery life and changes in charging current; as the number of
charge-discharge cycles increases, the battery’s voltage gradually de-
creases at the beginning of charging and gradually increases towards
the end of charging, as illustrated in Fig. 1(b). This variation reflects
the decline in battery capacity, which significantly impacts battery
life. Furthermore, Fig. 1(c) shows the change in temperature with the

number of cycles, revealing the evolution of the battery’s internal elec-
trochemical characteristics. Therefore, voltage, current, and tempera-
ture data for different batteries under various charge-discharge cycles
can all serve as important samples containing specific electrochemical
information.

3. Methodology

Following a detailed introduction to the dataset, this section will
elaborate on the overall workflow for EPEOL tasks. As illustrated in
Fig. 2, the workflow begins with the Battery Management System
(BMS), responsible for collecting real-time operational data from the
batteries. Subsequently, these raw data undergo a series of prepro-
cessing steps to be transformed into a video-like data format, thereby
enhancing data processability. The processed data are then fed into
the FPNN model for training and prediction tasks. The hyperparame-
ters of FPNN are adjusted using the Bayesian optimization algorithm,
where the primary variation in hyperparameter settings across different
EPEOL tasks lies in the number of InceptionBlocks (NOI), with other
parameters remaining consistent. Ultimately, the model’s prediction
outcomes are displayed through a meticulously designed data visualiza-
tion tool. This tool not only presents the predictive achievements but
also compares the predicted results with actual data, providing users
with an intuitive method of performance evaluation.

3.1. Data preprocessing

Before being fed into the model, the data must undergo a se-
ries of preprocessing steps. This study selected voltage, current, and
temperature data from the charging phase of the dataset, organizing
these data into three separate matrix blocks. Taking voltage data as
an example, the horizontal axis represents the cycle number, and the
vertical axis represents the charging capacity. As shown in Fig. 3(a),
each data sample includes the battery’s data from the first cycle and
its three most recent cycles. This sample selection strategy, based on a
balance between the number of samples and feature similarity, differs
from methods used in other studies [38,42]. Once organized into a
video-like format, each battery generated n samples, leading to a total



L. Jiang et al.

Energy 308 (2024) 132840

N
Training and test set
.0 °
> %S .
> o > —
Raw data Video-like data

1
F— ¥

Data scaling Data cleaning

1

Test set

-

ITraining set

&
M O

Optimization

<
)
‘ FPNN wth fixed architecture

“Predict

(2237

1491 A

R*=0.9975
MAPE =1.26%
MAE =10.47
RMSE =16.23

3

1

746

Number of InceptionBlocks
2

Predicted cycle life (Cycles)
0

20

0 T T
0 746 1491 2237
Measured cycle life (Cycles)

4

TeSt I ..
First 10 cycles 10 Y y

30

0 50 60 70 80
Used early cycles

Fig. 2. Illustrates the EPEOL technique roadmap based on FPNN.

of 124n samples due to the 124 batteries. To reduce randomness in
the experimental results, this study shuffled data at the sample level
rather than the battery level, meaning samples from the same battery
do not appear consecutively in the dataset. Following the proportions
used in other research [38,42], the first 94n samples were divided
into a training set, with the remaining samples forming the test set.
Subsequent steps included removing outliers and applying the Savitzky-
Golay filter for data smoothing. The features of the training and test
sets were normalized to a range of —1 to 1, while the labels were kept
as is, directly fed into one branch of FPNN. Additionally, considering
the importance of differential data, the battery’s voltage, current, and
temperature data were differenced against their first cycle’s data to
extract differential features. These differential features were processed
in the same manner as the original features and ultimately fed into
another branch of FPNN.

3.2. FPNN (Flexible Parallel Neural Network)

3.2.1. FPNN architecture
In the FPNN architecture, one branch network is tasked with pro-
cessing standard features, while another handles differential features,

ensuring the model comprehensively captures electrochemical informa-
tion. Within each branch network, electrochemical features x are first
processed through a 3D CNN to integrate Voltage, Current, and Tem-
perature (VIT) information, passing primary features to the next layer.
The 3DCNN operations include performing 3D convolutions (1), nor-
malization, and applying Leaky ReLU for nonlinearity, to extract non-
linear features of electrochemical data. Specifically, the 3D convolution
operation (1) can be represented as:

20 = Cjok)y = 3, Y D x- K(m.n, D)
m n 1

x=I@G+mj+nk+I)

@

(2

where C(i, j, k) is the output of the 3D convolution operation, corre-
sponding to the value of the element at position (i, j, k) in the output
volume. ) 3 > denotes the triple summation over all elements of
the convolution kernel. I(i + m,j + n,k + [) is the electrochemical
feature input to the current branch network, specified by the position
(i+m,j+nk+1), where i,j and k are the coordinates of the current
element being processed, and m, n and I are the row, column, and depth
offsets of the convolution kernel, respectively. K(m,n, ) is the weight at
position (m, n, 1) within the convolution kernel. This processing enables
FPNN to efficiently extract and integrate key features from battery data,



L. Jiang et al.

~

Energy 308 (2024) 132840

Fully connected

A 3
a ® @ -
(a) The The (b) VIT = - ‘gﬁ Outout
utpu
Capacity first | recent g8
ratio cycle | eycles ® © g
< > < > AVIT = ! i
v

(c)

F=H ® @

M

Output feature maps
of a previous layer

(e)

Receptive field

B

apillas
Feature map Ll/\/‘ =

Feature map
Receptive field

kernel

Feature map

.. branchlxl

..p branch3x3

..» branch3x3stack
««p branch_pool

Fig. 3. Detailed architecture and components of the FPNN.

providing a solid foundation for subsequent predictions. The expression
for the activation function is as follows,

z(x) if z(x) > 0,
= 3
7@ {az(x) if z(x) <0. ®

Within this context, is the input to the activation function, f(z) is
the output from the activation function, and « is a small constant,
typically ranging between 0 and 1 . Subsequently, the electrochem-
ical features merged via the 3DCNN are passed to the Inception-
Blocks flexible modules for high-level feature extraction, as shown
below:

Oblocks(X) = g(f(2)) €]

where f(z) denotes the output from the 3D CNN layer, and Oyjoq (%)
represents the output from the flexible InceptionBlocks modules, that
is, advanced multiscale features. These features are then fed into the
fully connected layers (5) within each branch network for nonlin-
ear mapping, preparing for the feature fusion across different branch
networks.

Fyubnet (X) = f (WOblock (x)+ b) ®

Here, Fypnetr (%) is the output vector from the fully connected layer
within a single branch, where f is the Leaky ReLU(3) activation
function, W is the weight matrix of the fully connected layer, and b
is the bias vector.

OppyN(X) =W - [Fsubnet 1 (xl) » Fsubnet 2 (Xz)] +b )

In this equation, Oppyy(x) is the output of FPNN, and
[Foupnet1 (1) » Fsupnetz (x2)] is the result of concatenating the output
vectors from the two branch networks. The forward propagation al-
gorithm for FPNN is detailed in Algorithm 1.

Algorithm 1 Forward Propagation Algorithm of FPNN

Input: Feature x,, Differential feature x,

Output: Output of FPNN

Step 1: 3D CNN integrates electrochemical features by Eq. (1).
Step 2: InceptionBlocks extracts advanced electrochemical features
by Eq. (4).

Step 3: Fully connected layers in subnetworks further extract features
by Eq. (5).

Step 4: Features from different subnetworks are integrated by Eq. (6).

Return: Output of FPNN

As shown in Fig. 3, detailed architecture and components of the
FPNN: @ a 3D convolutional layer using 3 x 3 convolutional kernels
and 64 channels; @ an InceptionBlocks module; ® a 2D convolutional
layer with a kernel size of 7 x 7 and 64 channels; ® a max-pooling
layer with a pooling kernel size of 3 x 3; ® an InceptionBlock flexible
unit; ® a 2D convolutional layer with a kernel size of 1 x 1 and
16 or 24 channels (used as the target channel number for residual
connections in other cases); @ an average pooling layer with a pooling
kernel size of 3 x 3; and a ® 2D convolutional layer with a kernel size
of 3 x 3 and 16 or 24 channels. The figure also shows: (a) Preprocessed
FPNN video-like data; (b) FPNN’s overall architecture; (c¢) Detailed
structure of the flexible module InceptionBlocks; (d) Specific details of
the InceptionBlock flexible unit; (e) Ilustration of the receptive field.

3.3. Flexible modules in FPNN: InceptionBlocks
As shown in Fig. 3(c), the electrochemical features f(z) processed

by the 3D CNN are passed to the flexible module, InceptionBlocks, for
advanced feature extraction. The InceptionBlocks module consists of an



L. Jiang et al.

initialization layer followed by multiple InceptionBlock flexible units.

The initialization layer is composed of a 7 x 7 convolutional kernel, a

2D CNN with 64 channels, and a max pooling layer with a 3 x 3 pool-

ing kernel (7), aiming to rapidly reduce the dimensionality of feature

data. This not only alleviates the model’s hardware requirements but

also prepares for subsequent feature extraction by the InceptionBlocks.
The operation of the max pooling layer can be represented as:

P(i,j):o max I(XS+mjXxS+n) @

<m<K,0<n<L

where P(i, j) is the element of the pooling output, (i X.S +m, j XS +n)
is the element of the input feature f(z),K,L are the dimensions of
the pooling window, with K as the height and L as the width. .S is
the stride, controlling the step size of the sliding window. (i, j) indexes
the output feature map, and (m, n) are the relative indexes within the
pooling window.

The 2D CNN operation includes 2D convolution (8), normalization,
and non-linearization using Leaky ReLU (3) to extract the non-linear
electrochemical information:

Cli,j) =Y, Y 1 +m,j+n)- K(m,n) ®

where I(i + m, j + n) is the element in the input matrix, K(m,n) is the
element in the convolution kernel, m and n are the row and column
indexes of the convolution kernel, and C(i, j) is the element in the con-
volution output. The output of the max pooling layer then serves as the
input to the first InceptionBlock, with each subsequent InceptionBlock’s
output passed to the next layer. Inception-ResNetA has been adapted
and simplified to form the InceptionBlock: by reducing the number of
channels in the feature map to decrease memory usage, thus easing the
hardware requirements for model deployment. To ensure the features
extracted by the initialization layer are effectively transferred across
different InceptionBlocks, residual connections are introduced in this
study. The number of InceptionBlocks (NOI) within InceptionBlocks is
not fixed, as different EPEOL tasks may require network architectures
of varying complexity.

The detailed structure of each flexible unit, the InceptionBlock,
is shown in Fig. 3(d). The InceptionBlock takes the output from its
preceding layer as input and splits into four branches, each composed
of 2D CNNs with varying configurations. The first branch includes a
16-channel 2D convolution layer with a 1 x 1 convolution kernel; the
second branch consists of a 16-channel 2D convolution layer with a
1 x 1 convolution kernel followed by a 24 -channel 2D convolution
layer with a 3 x 3 convolution kernel; the third branch contains a 16
-channel 2D convolution layer with a 1 x 1 convolution kernel and two
24 -channel 2D convolution layers with 3 X 3 convolution kernels; the
fourth branch is composed of an average pooling layer with a 3 x 3
pooling kernel and a sequence of a 24-channel 2D convolution layer
with a 3 x 3 convolution kernel. The operation of the average pooling
layer can be represented as:

K—1L-1
- 1 . .

P(,,])_K—XLZ:)Z})I(,XS+m,]><S+n) 9)
where P(i, j) is the element in the pooling output, I(i X .S +m, j X .S +n)
is the element in the input feature map, K x L is the size of the pooling
window, K is the height of the window, and L is the width. S is the
stride, controlling the sliding step of the window. (i, j) indexes the out-
put feature map, and (m, n) are the relative indexes within the pooling
window. The outputs of these four branches are concatenated together,
forming the output features of the InceptionBlock. To ensure effective
transfer of extracted feature information between layers within the
InceptionBlock, residual connections (10) are used, which include a
linear transformation to adjust the dimensions of the input and output
for compatibility.

RIH)=F)+WI (10)

Energy 308 (2024) 132840

where F(I) is the output of a series of operations (such as convolution,
activation, etc.) within the residual block, R(I) is the output of the
residual block. [ is the input to the residual block. Since the dimensions
of F(I) and I do not match, a linear transformation W is added to
adjust the dimensions of to match F(I).

In Fig. 3(d), we observe that different branches employ varying
numbers of convolutional layers. This design enables the model to
learn features at multiple scales. As shown in Fig. 3(e), an example
calculation of a 2D CNN layer with two layers of 3 x 3 convolution
kernels is displayed. On the final output’s 2 x 2 feature map, the pink
pixel values are computed based on a 3 x 3 region in the previous
layer’s feature map, which is referred to as the receptive field in the
current feature map. However, this 4 x 4 feature map is also the
result of convolution operations from the previous layer. Here, the pixel
values in the green 3 x 3 region are computed from a 5 x 5 area in
the layer above. This means that receptive fields of different sizes can
capture feature information at various scales. Therefore, by designing
receptive fields of diverse ranges within the flexible units, FPNN is
capable of learning electrochemical features across different scales.

3.4. Training and inference algorithm

This study uses Bayesian optimization [43] to determine the hyper-
parameters of FPNN. Bayesian optimization employs Gaussian process
regression as a surrogate model to provide predicted values and their
confidence intervals for prediction points, effectively balancing explo-
ration and exploitation. Among these hyperparameters, NOI is a key
parameter that endows FPNN with the ability to adapt to different
EPEOL tasks.

Due to the significant differences in data distribution across differ-
ent data scenarios (10-100 cycles), the optimal hyperparameters for
different scenarios may vary significantly. We mainly investigate the
impact of the NOI hyperparameter on model performance. Therefore,
other hyperparameters should remain constant across different data
scenarios (10-100 cycles) to analyze the role of NOI. We chose to
perform hyperparameter search in the 60-cycle data scenario and use
this set of hyperparameters as the common hyperparameters for other
data scenarios to study the role of NOI.

However, since less data in early prediction tasks means earlier
prediction of lifespan, allowing for earlier understanding of battery
status and saving more resources, we also conducted hyperparameter
search in a relatively early data scenario (30 cycles). We did not choose
the 10-cycle data scenario for the search because the amount and
distribution of data in 10 cycles differ too much from other scenarios.
The final choice of 30 and 60 cycles was the result of weighing various
factors.

Since experiments conducted in the 30-cycle scenario are more prac-
tically significant, this study mainly explores hyperparameter search
in the first 30 cycles and analyzes the role of NOI. The experimental
data for the hyperparameter search in the first 60 cycles is provided in
the supplementary information. Unless otherwise specified, the experi-
ments and analyses in the following text are based on hyperparameters
determined in the first 30 cycles.

To comprehensively evaluate the model’s predictive performance,
this study employs the MAPE (11), Mean Absolute Error (MAE)(12),
and Root Mean Square Error (RMSE)(13) as evaluation metrics, with
their corresponding mathematical expressions as follows:

n A
MAPE = 100% Z|y,- y,-' an
n i=1 Vi

n
1 -
MAE=— 3" |y - (12)
i=1

13




L. Jiang et al.

Table 1

Hyperparameters for the model.
Parameter Value
Batch size 32
Learning rate 0.006364460432422959
Betal 0.6321610255878152
T_max 50
Weight decay 0.0037294309652403904
Patience 60
Step size 67
Gamma 0.7006417870520055

Warmup epochs
Leaky slope

Gradient clip

Alpha RMSprop
Initial channels

FC1 output dimension
Scheduler type
Optimizer type
Convolution mode
Linear mode

89
0.05926767475346575
78.52765595281589
0.9136110938572766
256

8055

StepLR

RAdam

fan_in

fan_in

where: n is the total number of samples, y; is the actual value of the ith
sample, and ; is the predicted value of the ith sample.

This study introduces a novel one-stop training and inference algo-
rithm, as outlined in Algorithm 2. As previously described, data are first
split into training and test sets in Step 1, followed by a series of data
preprocessing operations in Step 2. Subsequently, in Step 3, a portion
of the training set is allocated as a validation set for parameter tuning
during the Bayesian optimization process. The Bayesian optimization
phase begins with the initialization of a set of hyperparameters in Step
4, under which the FPNN model is trained. Each training iteration
covers multiple epochs, entailing the process of forward and backward
propagation (Steps 5 and 6).

Through a complete cycle of forward and backward propagation,
the model traverses the entire dataset, facilitating knowledge acqui-
sition and weight optimization. By repeating this process, the model
can be quickly optimized. Here, the number of training epochs is set to
a high value to ensure sufficient optimization iterations. To maintain
training efficiency, an early stopping strategy is implemented: if no
reduction in validation loss is observed after several iterations, the
current hyperparameter trial is terminated, and step 4 is restarted to
explore the next set of hyperparameters. This inner loop continues until
the validation loss drops to a predetermined lower threshold. Once
hyperparameter tuning is complete, step 7 returns the optimal set of
hyperparameters for subsequent model training and inference. Table 1
shows some of the final important hyperparameters:

Before formally proceeding with model training and inference, to
fully utilize the data resources, the training and validation sets are
merged into a new training set (Step 8). Then, employing the previously
identified optimal hyperparameter combination, the model undergoes
multiple epochs of iterative training. Given FPNN’s architectural ad-
justment capability, the training epochs are set to 1000 to prevent
undertraining due to insufficient iterations. Next, the model is saved
and loaded (Step 12), and its performance is evaluated using the test
set (Step 13), marking the conclusion of the model inference phase.
These inference results will be presented in subsequent sections.

Overall, compared to traditional training and inference algorithms,
the main improvements and integrations are as follows:

1. Full utilization of data: We divided the dataset into training,
validation, and test sets. To ensure the model’s generalization
ability, hyperparameters were first identified through validation
set performance. After determining the hyperparameters, the
training and validation sets were combined into a new training
set to fully utilize the data. Since the model can control complex-
ity based on the NOI value to avoid underfitting or overfitting,

Energy 308 (2024) 132840

Algorithm 2 Training and Evaluation of FPNN

Input: Dataset
Output: Trained Model, Test Loss
Step 1: Split the dataset into training and test sets.
Step 2: Perform data preprocessing, including cleaning, scaling, and
sparsifying the data.
Step 3: Further split the training set into a new training set and a
validation set.
Repeat
Step 4: Initialize or adjust hyperparameters using Bayesian
optimization algorithm.
Do
Repeat
Outer Loop for multiple epochs:
Do
Forward Propagation
Backward Propagation:
Step 5: Calculate gradients based on the training
loss.
Step 6: Update network parameters.
End
Until early stopping counter is reached without a decrease in
minimum validation loss.
End
Until the validation loss is below the predefined threshold.
Step 7: Return the optimized hyperparameters.
Step 8: Concatenate the training and validation sets to form a new
training set.
Step 9: Set the hyperparameters found to be optimal in the previous
steps.
Do
Repeat
Outer Loop for multiple epochs:
Do
Forward Propagation
Backward Propagation:
Step 10: Calculate gradients based on the training loss.

Step 11: Update network parameters.
End
Until reach a predefined number of epochs.
End
Step 12: Save the model and load the model.
Step 13: Forward Propagate on the test set to compute the test loss.
Return Trained Model, Test Loss

we no longer rely on the validation set to monitor performance.
Instead, the number of iterations is set to a large value to ensure
sufficient iterations.

2. Faster convergence: We used Bayesian optimization to find
hyperparameters. Bayesian optimization uses Gaussian process
regression as a surrogate model, enabling faster convergence.
Additionally, an early stopping strategy was adopted to further
accelerate convergence.

4. Results and discussion
4.1. Evaluation of FPNN model predictive performance

This section evaluates the EPEOL prediction performance of FPNN
under different cycle data, particularly analyzing the impact of NOI
(number of InceptionBlocks). The study results show that different NOI
settings significantly affect the prediction accuracy of FPNN in EPEOL
tasks. As shown in Table 2, using 10-cycle data as an example, when



L. Jiang et al.

Energy 308 (2024) 132840

Table 2 Table 3
Impact of NOI on FPNN’s EPEOL performance. Prediction errors of different model structures at optimal NOI.
Used early cycles Blocks MAPE (%) MAE (Cycles) RMSE (Cycles) Used early cycles  Detach MAPE (%) MAE (Cycles) RMSE (Cycles)
0 1.55 14.49 29.32 None 1.26 10.47 16.23
1 1.86 17.35 36.99 Residual 1.55 14.57 26.66
10 2 1.79 16.86 32.27 10 3D conv 2.35 22.88 45.68
3 1.26 10.47 16.23 A branch 96.07 762.5 832.58
4 1.77 15.23 25.00 Initial layers - - -
0 0.66 7.08 17.50 None 0.41 3.71 8.01
1 0.76 6.49 11.72 Residual 0.89 8.12 32.55
20 2 0.69 6.24 12.79 20 3D conv 0.96 8.76 18.19
3 0.61 5.57 12.31 A branch 90.41 753.73 853.68
4 0.41 3.71 8.02 Initial layers - - -
0 0.63 4.86 9.95 None 0.37 3.38 8.33
1 0.37 3.38 8.34 Residual 0.39 3.28 8.53
30 2 0.79 7.38 36.98 30 3D conv 0.52 4.61 8.78
3 0.50 4.38 8.46 A branch 84.17 726.55 842.75
4 0.42 3.99 16.14 Initial layers - - -
0 0.33 2.83 5.56 None 0.33 2.82 5.56
1 0.57 5.19 17.21 Residual 0.45 3.84 7.23
40 2 0.59 5.28 10.81 40 3D conv 0.44 3.65 6.64
3 0.49 4.45 11.98 A branch 79.17 694.75 825.33
4 0.46 3.56 5.61 Initial layers - - -
0 0.65 5.90 9.89 None 0.32 3.22 6.74
1 1.26 11.04 16.35 Residual 0.63 5.89 10.56
50 2 0.32 3.22 6.74 50 3D conv 0.68 5.81 9.94
3 0.84 7.64 11.05 A branch 75.44 682.8 829.02
4 NaN NaN NaN Initial layers - - -
0 0.32 2.41 5.06 None 0.32 2.41 5.06
1 0.41 3.53 7.84 Residual 0.38 3.05 5.63
60 2 0.41 3.2 5.02 60 3D conv 0.49 3.69 5.67
3 0.59 5.15 10.56 A branch 72.1 651.58 805.79
4 0.46 3.98 8.87 Initial layers - - -
0 0.41 3.54 6.68 None 0.31 2.8 7.12
1 0.31 2.8 7.12 Residual 0.42 3.92 13.27
70 2 0.38 3.43 7.96 70 3D conv 0.49 4 6.96
3 0.56 5.64 14.14 A branch 71.08 659.02 818.57
4 0.51 5.12 15.27 Initial layers - - -
0 0.51 4.27 6.41 None 0.31 2.99 10.49
1 0.6 4.75 6.01 Residual 0.54 4.43 5.65
80 2 0.69 6.45 11.21 80 3D conv 0.51 4.58 7.5
3 0.31 2.99 10.49 A branch 68.9 630.14 785.73
4 0.49 4.13 7.32 Initial layers - - -
0 0.22 1.77 2.44 None 0.22 1.77 2.44
1 0.42 3.38 6.68 Residual 0.3 2.5 3.61
90 2 0.55 4.94 8.16 90 3D conv 0.38 3 3.88
3 0.29 3.11 9.92 A branch 64.21 600.75 773.62
4 0.41 2.97 4.5 Initial layers - - -
0 0.34 2.37 3.86 None 0.34 2.37 3.86
1 0.48 4.61 10.18 Residual 0.39 3.36 6.61
100 2 0.39 3.47 5.78 100 3D conv 0.37 2.57 4.88
3 0.62 4.9 6.9 A branch 64.26 599.38 770.49
4 0.6 4.98 6.74 Initial layers - - -
Note: “NaN” indicates that during the training process, the gradient descent optimiza- Note: “~” indicates that due to excessive memory consumption by the model after

tion algorithm iterated abnormally, resulting in a calculated Loss value of NaN, making
further gradient computation impossible.

NOI is set to 0, despite not using InceptionBlock, FPNN still achieved a
low MAPE of 1.55% through effective collaboration of other modules,
demonstrating high accuracy. However, when NOI increased to 1 or
2, MAPE rose to 1.86% and 1.79%, respectively, indicating a decline
in model performance, possibly due to inappropriate model structure
design. When NOI was set to 3, the model performance was optimal,
with MAPE dropping to 1.26%, possibly due to the good synergy of
multiple InceptionBlocks making the model architecture best suited for
the current task. However, when NOI further increased to 4, MAPE
rose again to 1.77%, possibly due to a deeper network weakening the
nonlinear information transmission capability.

Using the first 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 cycle data,
the optimal NOI values are 3, 4, 1, 0, 2, 0, 1, 3, 0, and 0, respectively,
with MAPE values of 1.26%, 0.41%, 0.37%, 0.33%, 0.32%, 0.32%,
0.31%, 0.31%, 0.22%, and 0.34%, respectively. Overall, the model’s
prediction performance improves with the increase in early data vol-
ume. However, when using the first 100 cycle data, the model’s optimal

removing the initialization layer in the InceptionBlocks, the ablation experiment could
not proceed, and data was not collected; “A branch” refers to the differential feature
branch removed in the dual-stream network.

performance increases to 0.34%. This might be due to the prediction
error being already very small, leading to statistical fluctuations from
0.22% to 0.34%. Additionally, the data volume and distribution of 90
cycles are more similar to 30 cycles, hence showing lower error.

Specifically, when the early data volume is small (10, 20 cycles), a
larger NOI (3, 4) is necessary. As the data volume increases (30, 40, 50,
60, 70, 90, 100 cycles), the optimal NOI reduces to 1, 0, 2, 0, 1, 0, and
0, respectively. This indicates that with larger data volumes, a simpler
FPNN structure is sufficient to achieve high-accuracy predictions. This
may be because, with larger data volumes, a larger NOI makes the
optimization space more complex, making it easier for the model to
jump to points away from the local optimum, thus making gradient
descent-based optimization more challenging. Of course, the case of 80
cycles is an exception, with an optimal NOI of 3, which aligns with the
basic statistical rule that most data conforms to general patterns, with
some anomalies.



L. Jiang et al.

Energy 308 (2024) 132840

a b ( d e

() 2237 (b) 2237 ( ) 2237 ( )2237 ( ) 2237
S S S S S
s, 4 s, s, s,
< 1491 < 1491 < 1491 < 1491 < 1491
= = = = =
B £ B S B
z z z z z
T 746 2 746 T 746 / 2 746 T 746
= z = z =
z 4 z / z / t / b /
B 2 Test A & Test Cl Test Cl 4 Test B Test

First 10 cycles First 20 cycles First 40 cycles S
746 1491 2237 746 1491 2237 746 1491 2237 746 1491 2237 746 1491 2237
Measured cycle life (Cycles) Measured cycle life (Cycles) Measured cycle life (Cycles) Measured cycle life (Cycles) Measured cycle life (Cycles)
2237 2237 2237 2237 2237
R?=0.9985 R*=0.9998 R?=0.9997 R* =0.9999 R?=0.9997
= MAPE = (.74% - MAPE = 0.37% P MAPE = 0.33% = MAPE = 0.35% P MAPE = 0.29%
2 MAE = 6.73 K] MAE 3 2 MAE = 3.00 K] 8 g MAE =
A RMSE = 15.37 £ RMSE = 5.46 e, RMSE = 6.25 £ A RMSE = 5.98
< 1491 < 1491 < 1491 < 1491 < 1491
& & 2 2 2
= = = = =
Z 746 E 746 T 746 / T 46 Z 746
= / 2 = 2 =
4 V4 H ) / H / j: /
Y / [ B B Y
0 : . 0 ; . 0 . . 0 . . 0 . .
0 746 1491 2237 0 746 1491 2237 0 746 1491 2237 0 746 1491 2237 0 746 1491 2237

Measured cycle life (Cycles) Measured cycle life (Cycles)

Measured cycle life (Cycles)

Measured cycle life (Cycles) Measured cycle life (Cycles)

h i k
(f) 2237 (g) 2237 ( ) 2237 ( ) 2237 ( ) 2237
R*=0.9998 R?=0.9997 R?=0.9992 . R? = 1.0000 R*=0.9999
— MAPE = 0.32% = MAPE = 0.31% — MAPE = 0.31% - MAPE = 0.22% — MAPE = 0.34%
K MAE =2.41 K MAE = 2.80 K MAE =2.99 K MAE = 1.77 K MAE =
2 RMSE =5.06 2 RMSE =7.12 2. RMSE = 10.49 : RMSE = 2.44 £ RMSE = 3.86
< 1491 < 1491 < 1491 < 1491 < 1491
& & & & &
2 2 2 2 2
z z 5 z z
Z 6 / Z 6 E 6 E 7464 Z 6
2 =2 2 2 2
E 7 - / g / : E i
& Test & Test &~ Test & # Test & Test
First 60 cycles First 70 cycles First 80 cycles s First 90 cycles First 100 cycles
0 ™ ™ 0 T ™ 0 ™ ™ 0 T ™ 0 T ™
746 1491 2237 746 1491 2237 746 1491 2237 746 1491 2237 746 1491 2237
Measured cycle life (Cycles) Measured cycle life (Cycles) Measured cycle life (Cycles) Measured cycle life (Cycles) Measured cycle life (Cycles)
2237 2237 2237 2237 2237
R*=0.9999 R*=0.999 R*=0.9991 o R*=1.0000 R*=0.9999
—_ MAPE = 0.30% - MAPE = 0.30% — MAPE = 0.33% — MAPE = 0.21% — 0.
2 MAE =2.12 rd ] 2 2 g MAI 74 2
4 RMSE = 4.16 g £ £ 2, RMSE =2.31 2 P,
< 1491 < 1491 < 1491 < 1491 1 < 1491 ,,
2 2 2 2 2
e £ B £ e
= = = = =
o & g 3 Z
E 746 R 2 746 2 7464 2 746
=2 = =2 = =2
: 2 / z / 2 z
[ & & & P &
/ First 100 cycles
0 T T T T T T T
746 1491 2237 746 1491 2237 746 1491 2237 746 1491 2237 746 1491 2237

Measured cycle life (Cycles) Measured cycle life (Cycles)

Measured cycle life (Cycles)

Measured cycle life (Cycles) Measured cycle life (Cycles)

Fig. 4. Presents the performance of the FPNN model in EPEOL tasks with different early data volumes under optimal NOI settings.

This finding suggests that as the data volume increases, some com-
plex components of FPNN may become unnecessary and may even
negatively impact prediction performance. Conversely, when the data
volume is small, a larger NOI is necessary to achieve higher accu-
racy with a more complex architecture, better fitting the current data
distribution. However, in the supplementary information, when using
hyperparameters determined by the first 60 cycles of data as the
common hyperparameters, the choice of NOI did not show this pattern.
This might be because the learning rate determined by the first 60
cycles of data is much smaller compared to that determined by the first
30 cycles of data, making the model’s optimization steps smaller and
less likely to jump to unfavorable points, leading to better convergence.
Nevertheless, even when using hyperparameters determined by the first
60 cycles of data, NOI still shows slight variations, indicating that the
model can adjust NOI to control the structure and complexity to better
fit the current data distribution.

Notably, when using 50 cycle data with an NOI of 4, the model’s
error was NaN. NaN stands for “Not a Number”. Since the numerical
display range of computers is limited, when values exceed this range,
the computer will display NaN. NaN appears when values are too
large or too small. During the optimization process of the gradient
descent algorithm, the model jumped to a state that resulted in NaN
values, which is a low-probability event. This situation might be due to
the model’s complexity, with more layers and numerical calculations,
increasing the probability of numerical overflow.

Table 4
EPEOL performance of other published methods.
Methods MAPE (%) RMSE (Cycles) Used early cycles
SVM [24] 8.00 115.00 100
Linear model [14] 7.50 100.00 100
AlexNet [44] - 91.51 100
GBRT [23] 7.00 82.80 250
3.08 42.00 20
HCNN [38] 1.12 13.00 60
1.26 16.23 10
Proposed method 0.32 6.74 50
0.22 2.44 90
Note: “~” indicates that the data was not available.

Fig. 4 shows the predictive performance of FPNN under optimal NOI
settings. The first row in the figure displays the performance of FPNN
on the test set when trained with early data from 10, 20, 30, 40, and 50
cycles. Specifically, Fig. 4(a) shows the performance of FPNN trained
with 10 cycle data on the EPEOL task, with an overall MAPE of 1.26%.
Although some samples exhibit larger prediction errors, most samples
have smaller errors, demonstrating high overall prediction accuracy.
This verifies the effectiveness of the FPNN model, especially when
data is limited. Fig. 4(b)-(e) sequentially show the performance of
FPNN trained with 20, 30, 40, and 50 cycle data on the EPEOL task.
As the early cycle data increases, the model’s prediction performance



L. Jiang et al.

(@)

Number of InceptionBlocks

20 30 40

(b)

|
50
Used early cycles

60

Energy 308 (2024) 132840

70

El lls
E _~
g B
& -10 2,
2 3.22 320 343 S
Hs 3
5 -38 4 -5 =
=
g
Z 2.83 L .
I U 0
40 50 60 70 80
(C) Used early cycles
2 5.61 NaN
2
=) P
- g
= <
5 &
RN 32.27 6.74 5.02 7.96 =
z 2
g 2
5 7.84 7.12 6.01 z
E
2 5.06 6.68 6.41

40

i
50
Used early cycles

60

70 80

Fig. 5. This figure details the impact of different early cycle data volumes and NOI settings on FPNN’s prediction performance: (a) Heatmap of MAPE; (b) Heatmap of MAE; (c)

Heatmap of RMSE.

significantly improves, with MAPE below 0.5% in all cases, achieving
very high accuracy. This highlights the FPNN’s ability to dynamically
fit the current data distribution highly.

Fig. 4 second row shows the performance of FPNN on the training
set when trained with 20, 30, 40, and 50 cycle data. Except for the case
with 40 cycle data, the performance on the training set is generally
better than on the test set, indicating that no data leakage occurred
during the training process of this study. When trained with the first 40
cycles, the model’s performance on the training set (MAPE of 0.35%) is
similar to its performance on the test set (MAPE of 0.33%), with slightly
better performance on the test set. This may be due to the inherent
randomness of machine learning methods. Fig. 4(f)-(k) show similar
patterns, which will not be further elaborated here.

“Data leakage” refers to a situation in machine learning where the
model unintentionally uses information outside the training dataset
during its creation. This leads to overly optimistic performance eval-
uations because the model has access to data that it typically would
not have in real-world scenarios. Simply put, it means the model
“saw’ information during training that it should not have, resulting
in excellent performance during training but poor performance on
new, unseen data. This happens because the model relies on invalid
information that is not available during actual predictions. Overall, the
better performance on the training set compared to the test set indicates
that no “data leakage” occurred during the training process in this
study, making the results more convincing.

Fig. 5 comprehensively shows the performance of FPNN in the
EPEOL task. Specifically, Fig. 5 presents the prediction performance
of FPNN when handling early data from the first 10 to 100 cycles,
including (a) a heatmap of MAPE changes, (b) a heatmap of MAE
changes, and (c) a heatmap of RMSE changes. The results show that
the model’s MAE and RMSE exhibit the same trend as MAPE. Since

10

MAPE is a relative error metric that can effectively reduce the risk of
excessive error value changes due to differences in cycle life, MAPE will
be prioritized in subsequent discussions. The conclusions obtained here
are consistent with previous analyses and will not be repeated.

Fig. 6(a)—(b) shows the variation in FPNN prediction performance
(box plots of MAPE and MAE error distributions) under different early
cycle data volumes and NOI settings. The results indicate that the
overall volatility of the model’s prediction performance is low, with the
maximum MAPE not exceeding 5%. As the early data volume increases,
the range of the model’s prediction error distribution gradually narrows
until it fluctuates within a small range, indicating increasingly stable
model performance. However, when using early data from 50 cycles,
the error volatility increases, which may be due to randomness and
chance in model optimization. As shown in Fig. 6(c), with the increase
in early data volume, the model’s MAE and RMSE gradually decrease
until they fluctuate within a small range. Fig. 6(d)-(e) presents the
prediction results for the short-lifespan battery “b2c1” and the long-
lifespan battery “blc2” samples. Even in these extreme cases, the
model’s prediction performance remains excellent, demonstrating the
high robustness of the method proposed in this study.

4.2. Analysis of the effects of the parallel network, initial layers, ResNet,
and 3D CNN

To gain a deeper understanding of the roles of various FPNN mod-
ules and their contributions to prediction accuracy, ablation experi-
ments were conducted, and the results are presented in Table 3. “Abla-
tion experiments” are a method used in machine learning and artificial
intelligence to understand the importance and impact of different com-
ponents of a model. In ablation experiments, specific parts of the model
are systematically removed or modified to observe how these changes



L. Jiang et al.

Energy 308 (2024) 132840

Used early cycles

(a) ¢ T m B Ene e
: HHHHH;HHHH P lertelbaa bbbt atliataieatd

(b) . } i pof v 5 e e
H ”HHJMHHM AT Y I T A

012340123401234012340123401

Used early cycles

012 0123401234

01234012340123401234012340123401234012340123401234¢4

(@) ...

~
(]
~'

[ RMSE
[ MAE

-
n

s

MAPE (%)

n

Evaluation metrics (Cycles)

(e)

11N

r—r—t— T
10 20 30 40 50 60 70 80 90 100
Used early cycles

0- H—
10 20 30 40 50 60 70 80 90 100
Used early cycles

=3 b2el 3 b2el
=3 blc2 60 4 =3 bic2
z
2. 40
<
=
S
=
20
[ﬂ [” ol
I R —
90

10 20 30 40 50 60 70 80 100

Used early cycles

Fig. 6. Comprehensively shows the overall performance of FPNN in the EPEOL task. Box plots of errors: (a) MAPE; (b) MAE; (c) Bar chart of errors for all battery samples; Bar

charts of errors for a single sample: (d) MAPE; (e) MAE.

~
g
~—

(a) (b)
None =3 3D conv 3 Residual B Abranch None =3 3D conv

4 7%
X =
© 24
= 5
=3
+ =44
= +
< 21 =
s <
g 2 21
- 1 g

1 |

10 20 30 40 50 60 70 80 90 100
Used Early Cycles

10 20 30 40 50 60 70 80 90 100
Used Early Cycles

B Abranch

3 Residual

[ Residual BB Abranch

Ln(RMSE + 1) (Cycles)

10 20 30 40 50 60 70 80 90 100
Used Early Cycles

Fig. 7. Results of the FPNN ablation experiments: (a) MAPE; (b) MAE; (c) RMSE.

affect the model’s performance. This helps identify which components
are essential and how they contribute to the overall effectiveness of the
model.

The impact of removing specific components from FPNN was ana-
lyzed under the optimal NOI settings. Fig. 7 visually presents the results
of the ablation experiments. In the figure, NaN values are replaced
with 0, and due to significant differences in data extremes, a simple
mathematical transformation was applied, error,, = In(1+error), where
error represents the error evaluation metric and error,, is the value on
the vertical axis in the figure.

Using early data from only 10 cycles, the results highlight the criti-
cal role of the differential feature branch in improving model accuracy.
Removing this branch led to a sharp increase in MAPE to 96.07%,
with MAE and RMSE rising to 762.5 cycles and 832.58 cycles, respec-
tively. Additionally, removing the residual connections caused a slight
increase in MAPE to 1.55%, with corresponding increases in MAE and
RMSE, underscoring the importance of residual connections in reducing
prediction error. Removing the 3D convolution layer increased MAPE

11

to 2.35%, further confirming the critical role of the 3D convolution
layer in feature extraction. Finally, when the initialization layer was
removed, the model’s memory usage became too high, making training
infeasible, which reveals the importance of the initialization layer for
model stability.

When trained with early data from 20-100 cycles, the patterns
observed when removing each module were similar to those seen with
10 cycles of early data, indicating that each component of the model is
crucial for overall performance.

4.3. Comparison with established methods

As shown in Table 4, the proposed FPNN method offers significant
performance advantages over other published EPEOL prediction tech-
niques. The FPNN model trained with the first 10, 50, and 90 cycle
data achieved MAPE values of 1.26%, 0.32%, and 0.22%, respectively,
outperforming other methods such as SVM, linear models, AlexNet,
GBRT, and HCNN in terms of MAPE. Additionally, the FPNN model



L. Jiang et al.

snl_features sn2_features snl_features

sn1_3DCNN sn2_3DCNN sn1_3DCNN

1 1 1
t 2 I» 2 I» 2
200 200 200
I D I 0 I 0
400 400 400
1 1024 1 1024 2048 1 1024 2048
slnl_InceptionBlocks

sln2_lnceptionB

locks
il

>

sln 1_InceptionBlocks

(IR '

Ak

176

(a) Prediction with EOL=148 cycles

2
4

(b) Prediction with EOL=796 cycles

1
t 2
00
I 0
00

Energy 308 (2024) 132840

sn2_features snl_features sn2_features

7

sn2_3DCNN sn1_3DCNN sn2_3DCNN

1 1
I 2 I» 2
200 200
I 0 I D
400 400

1 1024 2048 2048 1 1024

1 1024

san_lnceptiunBlocks

=
"

176

slnl_InceptianBlocks

slnz_lnceptionBlocks

88

176 )

(¢) Prediction with EOL=2237 cycles

Fig. 8. Reveals the specific roles and mutual influences of various modules in the FPNN model when predicting samples with different EOLs, uncovering the internal mechanism

of the model in handling complex EPEOL tasks.

requires significantly less early cycle data, highlighting its excellent
capability in improving data utilization efficiency.

In other publications, some use traditional machine learning meth-
ods such as SVM, linear models, and GBRT. Generally, these have
limited fitting capabilities compared to neural networks and require
complex feature engineering. Some publications use early neural net-
work architectures like AlexNet, which are now outdated. While HCNN
does demonstrate strong fitting capabilities, our designed FPNN com-
bines the advantages of core modules such as InceptionBlock, along
with unique data processing methods and algorithms, exhibiting even
stronger data fitting abilities.

Overall, when FPNN performs EPEOL tasks, the optimal NOI shows
slight variations when other hyperparameters remain unchanged. This
indicates that the model can adjust its structure and complexity by
tuning the NOI to better fit the current data distribution.

5. Model interpretability analysis
5.1. Analysis of the synergistic action of FPNN’s overall architecture

To delve into the model’s interpretability, this section analyzes in
detail the internal mechanism of the FPNN model in handling EPEOL
tasks. As shown in Fig. 8, the figure selects and presents the prediction
cases of individual samples with different EOLs from the early data
test set of the first 10 cycles, where “sn” represents the subnet. In
Fig. 8(a), a sample with an EOL of 148 inputs electrochemical features
composed of voltage, current, temperature, and charging capacity data
into one branch of the model. Since this data array is four-dimensional
and not conveniently visualized directly, specific dimensions have been
flattened for two-dimensional visualization. The first row, first column
of the figure shows the flattened electrochemical features, while the
first row, second column displays the differential features inputted into
another branch network. After the data enters the model, it is first
subjected to initial feature fusion by the 3D CNN, with the fused fea-
tures displayed in the second row, where features appear more uniform.
These fused features are then fed into the flexible InceptionBlocks mod-
ule for extracting advanced electrochemical features. In Fig. 8(b)-(c),
the electrochemical feature extraction cases of samples with different
EOLs are shown. It is evident that through the synergistic action of
multiple modules, the model can differentiate samples of different
EOLs and learn their respective advanced electrochemical features. This
demonstrates that the FPNN model can precisely capture the complex
nonlinear relationship between the electrochemical features of batteries
with different lifespans and their EOL.

12

5.2. Interpretation of learning outcomes of the flexible unit InceptionBlock

The design of the flexible unit InceptionBlock includes four branches
with different functions, each composed of a series of meticulously
designed convolutional layers. Taking branch 1 x 1 as an example,
the 1 x 1 convolution layer mainly handles channel number conver-
sion and feature information integration. This not only reduces the
model parameters but also enhances computational efficiency. Within
the InceptionBlock, most branches begin with a 1 x 1 convolution
kernel, aimed at quickly adjusting the channel number of the feature
map, preparing for deeper feature extraction. This rapid channel tran-
sition facilitates the fusion of information across different channels,
enhancing the model’s adaptability to input data and generalization
ability. Through optimizing weight parameters, the neural network
learns features from data and adapts to the target function. Weight
visualization offers insights into the distribution of weights learned
by convolutional layers in each branch, aiding in understanding the
model’s decision-making process.

Fig. 9 shows the heatmaps of convolutional layer weights in the
first InceptionBlock within InceptionBlocks of the FPNN model trained
with early data from 10 cycles, revealing the roles of different con-
volutional layers in feature extraction: (a) The convolutional layer
with 1 x 1 kernels in branchl x 1; (b) The convolutional layer with
1 x 1 kernels in branch3 x 3; (c) The convolutional layer with 1 x 1
kernels in branch3 x 3stack; (d) The convolutional layer with 1 x 1
kernels in branch_pool; (e) The convolutional layer with 1 x 1 kernels
in residual_conv; (f) The convolutional layer with 3 x 3 kernels in
branch3 x 3; (g) The first convolutional layer with 3 x 3 kernels in
branch3 x 3stack; (h) The second convolutional layer with 3 x 3 kernels
in branch3 x 3stack.

As demonstrated in Fig. 9(a)-(e), the sizes of the convolution
kernel weights in the 1 x 1 convolution layer vary, revealing how
FPNN differentially processes information across channels. Especially
in branch_pool, the 1 x 1 convolution layer following the pooling layer
highlights its ability to effectively transform features while reducing
dimensions.

Fig. 9(f) showcases the weight distribution of the 3 x 3 convolution
kernels in the branch3 x 3, compared to the 1 x 1 convolution ker-
nels, revealing its capability for specialized feature extraction. FPNN,
through this approach, reduces dependency on a single feature set,
thereby enhancing the model’s generalizability. In Fig. 9(g)-(h), the
branch3 x 3stack branch achieves a receptive field equivalent to larger
convolution kernels by stacking multiple 3 x 3 convolution layers,
while maintaining a lower number of parameters.



L. Jiang et al.

Energy 308 (2024) 132840

br3x3_Ix1
®) |

brixl_1x1 br3x3stack_lxx
Gl ot (© 1 - 1

P8 16 1 1
Kernel

s 16 1
Kernel

(d) br_pool_1x1 (e)
1 o 1

residual_conv_Ix1

44
Kernel

12 1
Kernel

br3x3stack_3x3_2
) Yz

br3x3_3x3

(8)  braxdstack_3x3_1 .

1 1
H
2 z
1 12 2! 12 -
Kernel Kernel 12 2
Kernel

brix1_Ix1
n) 1 —

1
2
=
6 "
1 12 24 1 12 ! 24
Kernel Kernel [
Kernel

br3x3stack, lxN
© 1z 1

(b) br3x3_Ix1
1m 2

- -

]
Channel

i

5 816 ! 1

Kernel

8 16
Kernel

64 v
1 8 16
Kernel

residual_conv_1x1

(d)  br_pool_Ix1
1 g =

-1

44
Kernel

1 12
Kernel

br3x3stack_3x3_2
(h) browstack 3x3.2

br3x3_3x3 brixdstack 3x3_1
o 1

0 £8 0 HB 0
2 E
< <

a 1

/

The first InceptionBlock in Subnetwork-1

The first InceptionBlock in Subnetwork-2

Fig. 9. Shows the heatmaps of convolutional layer weights in the first InceptionBlock within InceptionBlocks of the FPNN model trained with early data from 10 cycles, revealing

the roles of different convolutional layers in feature extraction.

By integrating complex nonlinear features extracted from different
branches and linear features transmitted through residual connections,
FPNN accomplishes effective feature fusion. The multi-layered com-
bination of InceptionBlocks further excavates advanced electrochem-
ical features across a broader scale, significantly enhancing FPNN’s
predictive accuracy. This section, through in-depth analysis of the
learning outcomes within each layer of the flexible unit InceptionBlock,
demonstrates FPNN model’s strong interpretability.

6. Conclusion

The FPNN model proposed in this study integrates multiple mod-
ules, including InceptionBlock, 3D CNN, 2D CNN, and dual-stream
networks, significantly enhancing the ability to extract electrochemical
features from video-like data. The FPNN model demonstrates high
adaptability to different EPEOL tasks by adaptively adjusting the num-
ber of InceptionBlocks. Experimental results on the MIT dataset show
that the FPNN model achieves excellent prediction accuracy in EPEOL
tasks, with MAPE values of 1.26%, 0.41%, 0.37%, 0.33%, 0.32%,
0.32%, 0.31%, 0.31%, 0.22%, and 0.34% when using the first 10, 20,
30, 40, 50, 60, 70, 80, 90, and 100 cycle data, respectively.

The study shows that when FPNN performs EPEOL tasks, the opti-
mal NOI shows slight variations when other hyperparameters remain
unchanged, indicating that the model can adjust its structure and
complexity by tuning the NOI to better fit the current data distribution.
Further ablation experiments validated the importance and indispens-
ability of each component in the FPNN architecture. Additionally,
visual analysis of the features learned by the overall FPNN architecture
and the inner layer weights of the InceptionBlock enhanced the model’s
interpretability and confirmed its effectiveness in handling complex
feature extraction tasks.

Given the similarity between EPEOL tasks and other machine learn-
ing tasks in the battery field, these characteristics of FPNN suggest its
great potential for broader applications in the battery industry.

13

CRediT authorship contribution statement

Lidang Jiang: Writing — original draft, Visualization, Validation,
Software, Project administration, Methodology, Data curation, Con-
ceptualization. Zhuoxiang Li: Formal analysis. Changyan Hu: For-
mal analysis. Junxiong Chen: Formal analysis. Qingsong Huang:
Supervision, Funding acquisition. Ge He: Writing — review & editing,
Supervision, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors are grateful for the support of the National Key Re-
search and Development Program of China (No. 2021YFB40005) and
the special funding for basic scientific research business expenses in
the central universities of China (No. 2022SCU12096).

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.energy.2024.132840.


https://doi.org/10.1016/j.energy.2024.132840

L. Jiang et al.

References

[11

[2]

[31

[4]

[5]

(6]

71

(8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Yoshino Akira. The birth of the lithium-ion battery. Angew Chem Int Ed
2012;51(24):5798-800.

Gan Chuanhai, Zhang Chengkun, Wen Weidong, Liu Yingkuan, Chen Juan,
Xie Qingshui, Luo Xuetao. Enhancing delithiation reversibility of Li15Si4 alloy of
silicon nanoparticles-carbon/graphite anode materials for stable-cycling lithium
ion batteries by restricting the silicon particle size. ACS Appl Mater Interfaces
2019;11(39):35809-19.

Sehrawat Poonam, Shabir Abgeena, Julien CM, Islam SS, et al. Recent trends
in silicon/graphene nanocomposite anodes for lithium-ion batteries. J Power
Sources 2021;501:229709.

Teki Ranganath, Datta Moni K, Krishnan Rahul, Parker Thomas C, Lu Toh-Ming,
Kumta Prashant N, Koratkar Nikhil. Nanostructured silicon anodes for lithium
ion rechargeable batteries. Small 2009;5(20):2236-42.

Zubi Ghassan, Dufo-Lépez Rodolfo, Carvalho Monica, Pasaoglu Guzay. The
lithium-ion battery: State of the art and future perspectives. Renew Sustain
Energy Rev 2018;89:292-308.

Han Xuebing, Ouyang Minggao, Lu Languang, Li Jiangiu. A comparative study
of commercial lithium ion battery cycle life in electric vehicle: Capacity loss
estimation. J Power Sources 2014;268:658-69.

Lin Chun-Pang, Cabrera Javier, Yang Fangfang, Ling Man-Ho, Tsui Kwok-
Leung, Bae Suk-Joo. Battery state of health modeling and remaining useful life
prediction through time series model. Appl Energy 2020;275:115338.

Ma Qiuhui, Zheng Ying, Yang Weidong, Zhang Yong, Zhang Hong. Remaining
useful life prediction of lithium battery based on capacity regeneration point
detection. Energy 2021;234:121233.

Fleischer Christian, Waag Wladislaw, Heyn Hans-Martin, Sauer Dirk Uwe. On-
line adaptive battery impedance parameter and state estimation considering
physical principles in reduced order equivalent circuit battery models: Part
1. Requirements, critical review of methods and modeling. J Power Sources
2014;260:276-91.

Ouyang Tiancheng, Xu Peihang, Chen Jingxian, Lu Jie, Chen Nan. An online
prediction of capacity and remaining useful life of lithium-ion batteries based on
simultaneous input and state estimation algorithm. IEEE Trans Power Electron
2020;36(7):8102-13.

Allam Anirudh, Onori Simona. Online capacity estimation for lithium-ion battery
cells via an electrochemical model-based adaptive interconnected observer. IEEE
Trans Control Syst Technol 2020;29(4):1636-51.

Li Weihan, Fan Yue, Ringbeck Florian, J6st Dominik, Han Xuebing,
Ouyang Minggao, Sauer Dirk Uwe. Electrochemical model-based state estimation
for lithium-ion batteries with adaptive unscented Kalman filter. J Power Sources
2020;476:228534.

Liu Chang, Wang Yujie, Chen Zonghai. Degradation model and cycle life
prediction for lithium-ion battery used in hybrid energy storage system. Energy
2019;166:796-806.

Severson Kristen A, Attia Peter M, Jin Norman, Perkins Nicholas, Jiang Benben,
Yang Zi, Chen Michael H, Aykol Muratahan, Herring Patrick K, Fraggedakis Dim-
itrios, et al. Data-driven prediction of battery cycle life before capacity
degradation. Nat Energy 2019;4(5):383-91.

Wang Dong, Yang Fangfang, Tsui Kwok-Leung, Zhou Qiang, Bae Suk Joo.
Remaining useful life prediction of lithium-ion batteries based on spherical
cubature particle filter. IEEE Trans Instrum Meas 2016;65(6):1282-91.

Jordan Michael I, Mitchell Tom M. Machine learning: Trends, perspectives, and
prospects. Science 2015;349(6245):255-60.

Saxena Saurabh, Kang Myeongsu, Xing Yinjiao, Pecht Michael. Anomaly detec-
tion during lithium-ion battery qualification testing. In: 2018 IEEE international
conference on prognostics and health management. ICPHM, IEEE; 2018, p. 1-6.
Myles Anthony J, Feudale Robert N, Liu Yang, Woody Nathaniel A,
Brown Steven D. An introduction to decision tree modeling. J Chemometr: J
Chemometr Soc 2004;18(6):275-85.

Noble William S. What is a support vector machine? Nature Biotechnol
2006;24(12):1565-7.

Guo Gongde, Wang Hui, Bell David, Bi Yaxin, Greer Kieran. KNN model-based
approach in classification. In: On the move to meaningful internet systems 2003:
CooplS, DOA, and ODBASE: OTM confederated international conferences, CooplS,
DOA, and ODBASE 2003, catania, sicily, Italy, November 3-7, 2003. proceedings.
Springer; 2003, p. 986-96.

Zhu Shan, Zhao Naiqin, Sha Junwei. Predicting battery life with early cyclic data
by machine learning. Energy Storage 2019;1(6):e98.

14

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Energy 308 (2024) 132840

Zhang Yunwei, Tang Qiaochu, Zhang Yao, Wang Jiabin, Stimming Ulrich, Lee Al-
pha A. Identifying degradation patterns of lithium ion batteries from impedance
spectroscopy using machine learning. Nature Commun 2020;11(1):1706.

Yang Fangfang, Wang Dong, Xu Fan, Huang Zhelin, Tsui Kwok-Leung. Lifespan
prediction of lithium-ion batteries based on various extracted features and
gradient boosting regression tree model. J Power Sources 2020;476:228654.
Fei Zicheng, Yang Fangfang, Tsui Kwok-Leung, Li Lishuai, Zhang Zijun. Early
prediction of battery lifetime via a machine learning based framework. Energy
2021;225:120205.

LeCun Yann, Bengio Yoshua,
2015;521(7553):436-44.

Zhang Yu, Peng Zhen, Guan Yong, Wu Lifeng. Prognostics of battery cycle life
in the early-cycle stage based on hybrid model. Energy 2021;221:119901.

Zhao Fen, Li Yinguo, Wang Xinheng, Bai Ling, Liu Tailin. Lithium-ion batteries
state of charge prediction of electric vehicles using RNNs-CNNs neural networks.
Teee Access 2020;8:98168-80.

Hong Jichao, Wang Zhenpo, Chen Wen, Wang Le-Yi, Qu Changhui. Online
joint-prediction of multi-forward-step battery SOC using LSTM neural networks
and multiple linear regression for real-world electric vehicles. J Energy Storage
2020;30:101459.

Ren Lei, Dong Jiabao, Wang Xiaokang, Meng Zihao, Zhao Li, Deen M Jamal. A
data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining
useful life. IEEE Trans Ind Inf 2020;17(5):3478-87.

Wei Meng, Ye Min, Li Jia Bo, Wang Qiao, Xu Xinxin. State of charge estimation
of lithium-ion batteries using LSTM and NARX neural networks. Ieee Access
2020;8:189236-45.

Yi Yahui, Xia Chengyu, Feng Chao, Zhang Wenjing, Fu Chenlong, Qian Liqin,
Chen Siqi. Digital twin-long short-term memory (LSTM) neural network based
real-time temperature prediction and degradation model analysis for lithium-ion
battery. J Energy Storage 2023;64:107203.

Vaswani Ashish, Shazeer Noam, Parmar Niki, Uszkoreit Jakob, Jones Llion,
Gomez Aidan N, Kaiser Lukasz, Polosukhin Illia. Attention is all you need. Adv
Neural Inf Process Syst 2017;30.

Wang Zili, Liu Yonglu, Wang Fen, Wang Hui, Su Mei. Capacity and remaining
useful life prediction for lithium-ion batteries based on sequence decomposition
and a deep-learning network. J Energy Storage 2023;72:108085.

Bian Chong, Yang Shunkun, Liu Jie, Zio Enrico. Robust state-of-charge estima-
tion of li-ion batteries based on multichannel convolutional and bidirectional
recurrent neural networks. Appl Soft Comput 2022;116:108401.

Chen Dinghong, Zhang Weige, Zhang Caiping, Sun Bingxiang, Cong XinWei,
Wei Shaoyuan, Jiang Jiuchun. A novel deep learning-based life prediction
method for lithium-ion batteries with strong generalization capability under
multiple cycle profiles. Appl Energy 2022;327:120114.

Gong Qingrui, Wang Ping, Cheng Ze, et al. A method for estimating state
of charge of lithium-ion batteries based on deep learning. J Electrochem Soc
2021;168(11):110532.

Li Yihuan, Li Kang, Liu Xuan, Wang Yanxia, Zhang Li. Lithium-ion battery
capacity estimation—A pruned convolutional neural network approach assisted
with transfer learning. Appl Energy 2021;285:116410.

Yang Yixin. A machine-learning prediction method of lithium-ion bat-
tery life based on charge process for different applications. Appl Energy
2021;292:116897.

Szegedy Christian, Ioffe Sergey, Vanhoucke Vincent, Alemi Alexander. Inception-
v4, inception-resnet and the impact of residual connections on learning. In:
Proceedings of the AAAI conference on artificial intelligence. vol. 31, 2017.

Ji Shuiwang, Xu Wei, Yang Ming, Yu Kai. 3D convolutional neural net-
works for human action recognition. IEEE Trans Pattern Anal Mach Intell
2012;35(1):221-31.

Simonyan Karen, Zisserman Andrew. Two-stream convolutional networks for
action recognition in videos. Adv Neural Inf Process Syst 2014;27.

Zhang Qisong, Yang Lin, Guo Wenchao, Qiang Jiaxi, Peng Cheng, Li Qinyi,
Deng Zhongwei. A deep learning method for lithium-ion battery remaining useful
life prediction based on sparse segment data via cloud computing system. Energy
2022;241:122716.

Snoek Jasper, Larochelle Hugo, Adams Ryan P. Practical bayesian optimization
of machine learning algorithms. Adv Neural Inf Process Syst 2012;25.

He Ning, Wang Qiqi, Lu Zhenfeng, Chai Yike, Yang Fangfang. Early prediction of
battery lifetime based on graphical features and convolutional neural networks.
Appl Energy 2024;353:122048.

Hinton Geoffrey. Deep learning. Nature


http://refhub.elsevier.com/S0360-5442(24)02614-8/sb1
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb1
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb1
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb2
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb2
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb2
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb2
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb2
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb2
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb2
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb2
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb2
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb3
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb3
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb3
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb3
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb3
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb4
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb4
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb4
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb4
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb4
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb5
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb5
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb5
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb5
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb5
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb6
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb6
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb6
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb6
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb6
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb7
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb7
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb7
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb7
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb7
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb8
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb8
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb8
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb8
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb8
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb9
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb9
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb9
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb9
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb9
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb9
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb9
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb9
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb9
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb10
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb10
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb10
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb10
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb10
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb10
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb10
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb11
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb11
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb11
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb11
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb11
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb12
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb12
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb12
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb12
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb12
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb12
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb12
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb13
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb13
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb13
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb13
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb13
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb14
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb14
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb14
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb14
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb14
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb14
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb14
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb15
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb15
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb15
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb15
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb15
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb16
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb16
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb16
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb17
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb17
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb17
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb17
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb17
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb18
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb18
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb18
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb18
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb18
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb19
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb19
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb19
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb20
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb20
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb20
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb20
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb20
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb20
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb20
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb20
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb20
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb21
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb21
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb21
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb22
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb22
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb22
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb22
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb22
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb23
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb23
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb23
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb23
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb23
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb24
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb24
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb24
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb24
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb24
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb25
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb25
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb25
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb26
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb26
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb26
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb27
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb27
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb27
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb27
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb27
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb28
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb28
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb28
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb28
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb28
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb28
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb28
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb29
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb29
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb29
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb29
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb29
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb30
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb30
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb30
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb30
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb30
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb31
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb31
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb31
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb31
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb31
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb31
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb31
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb32
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb32
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb32
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb32
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb32
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb33
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb33
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb33
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb33
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb33
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb34
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb34
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb34
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb34
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb34
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb35
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb35
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb35
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb35
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb35
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb35
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb35
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb36
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb36
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb36
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb36
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb36
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb37
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb37
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb37
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb37
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb37
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb38
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb38
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb38
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb38
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb38
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb39
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb39
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb39
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb39
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb39
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb40
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb40
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb40
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb40
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb40
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb41
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb41
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb41
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb42
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb42
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb42
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb42
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb42
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb42
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb42
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb43
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb43
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb43
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb44
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb44
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb44
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb44
http://refhub.elsevier.com/S0360-5442(24)02614-8/sb44

	A robust adapted Flexible Parallel Neural Network architecture for early prediction of lithium battery lifespan
	Introduction
	Input Data Generation
	Methodology
	Data Preprocessing
	FPNN (Flexible Parallel Neural Network)
	FPNN Architecture

	Flexible Modules in FPNN: InceptionBlocks
	Training and Inference Algorithm

	Results and Discussion
	Evaluation of FPNN Model Predictive Performance
	Analysis of the Effects of the Parallel Network, Initial Layers, ResNet, and 3D CNN
	Comparison with Established Methods

	Model Interpretability Analysis
	Analysis of the Synergistic Action of FPNN's Overall Architecture
	Interpretation of Learning Outcomes of the Flexible Unit InceptionBlock

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


