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Obtaining electrochemical data through experiments is expensive.
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ARTICLE INFO ABSTRACT
Keywords: In optimizing the performance and extending the lifespan of lithium batteries, accurate state prediction is
Lithium batteries crucial. Traditional regression and classification methods have achieved some success in predicting battery

Generative Al
Machine learning
Deep learning

states. However, the effectiveness of these data-driven approaches largely depends on the availability and
quality of public datasets. Additionally, generating electrochemical data primarily through battery experiments
is a lengthy and costly process, making it extremely difficult to obtain high-quality data. This difficulty,
combined with data incompleteness, significantly affects prediction accuracy. To address these challenges, this
study introduces End of Life (EOL) and Equivalent Cycle Life (ECL) as supervised conditions for generative
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Al models. By integrating an embedding layer into the CVAE model, we developed the Refined Conditional
Variational Autoencoder (RCVAE). Through preprocessing data into a quasi-video format, coupled with
customized training and inference algorithms, the RCVAE generates the required charging data in real time
based on the battery’s ECL and EOL. This avoids storing irrelevant information, saving space and resources.
RCVAE uses a lightweight architecture, enabling fast generation of necessary voltage, current, temperature, and
charging capacity data. This approach provides users with a comprehensive electrochemical dataset, pioneering
a new research domain for the artificial synthesis of lithium battery data. Furthermore, based on the detailed
synthetic data, various battery state indicators can be calculated, offering new perspectives and possibilities
for lithium battery performance prediction.

1. Introduction

Lithium-ion batteries (LIBs) have emerged as a pivotal component in
energy conversion strategies due to their low cost, high energy density,
and longevity, poised to replace traditional fossil-fueled automotive
engines. This plays a critical role in global efforts to reduce greenhouse
gas emissions and combat climate change [1]. As an environmen-
tally friendly and efficient rechargeable energy option, lithium-ion
batteries have found extensive applications in the realm of intelli-
gent manufacturing, including computational engineering, logistics,
and aerospace, among others. Their low pollution footprint, low self-
discharge rates, broad operating temperature range, high energy and
power density, along with long-term durability [2-4], have positioned
them as a preferred energy solution. However, despite their vast poten-
tial across various application domains, the high replacement costs [5],
challenges in accurately assessing battery states [6], and safety con-
cerns [7-9] continue to be focal points of widespread user attention.
Fortunately, Recurrent Neural Networks (RNN) [10], along with their
derivatives [11-14], and Convolutional Neural Networks (CNN) [15],
have been proven effective in precisely predicting battery states.

However, the efficacy of these data-driven methods largely hinges
on the availability and quality of public datasets. With the growing
interest in data-driven techniques and the pursuit of a deeper under-
standing of battery complex interactions, various datasets featuring
different battery chemistries, quantities of tested batteries, and test-
ing conditions have been developed. These datasets can generally be
categorized into four types: cycle ageing data [16-19], drive cycle
data [20], calendar ageing data [21], and specific-purpose datasets such
as simulated satellite operation profile battery data [22,23]. Among
these, cycle ageing datasets are the most common type in current
practice, aiming to experimentally study the impact of various factors
(e.g., charge current, discharge current, temperature, depth of dis-
charge DOD) on the battery’s capacity retention ability during cycling.
These datasets typically include measurements of current, voltage, and
temperature during the cycles, along with the capacity and internal
resistance or impedance measurements for each cycle. The dataset
released by NASA [24], which covers information on 34 lithium-ion
18650 batteries with a nominal capacity of 2 Ah, marked the advent of
the first publicly available battery dataset, significantly impacting the
battery research field. The batteries underwent cycling tests at different
environmental temperatures (4 °C, 24 °C, 43 °C) using a standard
constant current—constant voltage (CC-CV) charging protocol, and vari-
ous discharge regimes were implemented. Another vital resource is the
collaboration between the Toyota Research Institute (TRI), MIT, and
Stanford University, which launched two rich and user-friendly high-
throughput cycling test datasets involving 357 (124 + 233) commercial
Lithium Iron Phosphate (LFP)/Graphite batteries (APR18650M1 A)
produced by A123 Systems, with a rated capacity of 1.1 Ah. The dataset
of 124 batteries [25] aims to study the effects of fast charging protocols
on battery ageing, while the dataset of 233 batteries [26] is similar
to the former and is not repeated here. Particularly, the dataset of
124 batteries, due to its high-quality data, well-organized format, and
accessibility, made a significant impact on the entire field upon its
release in 2019.

Creating these battery datasets requires significant time and fi-
nancial resources, yet the challenge of acquiring high-quality elec-
trochemical data remains unresolved. Introducing synthetic data can
enhance existing datasets, thereby improving model training perfor-
mance. A popular method currently involves interpolating experimental
data [27]. Although this strategy is straightforward, the generated
data are limited in quality and diversity. On the other hand, arti-
ficial intelligence generative models offer new possibilities for data
generation. Research on generative Al has mainly focused on natu-
ral language processing (NLP) and computer vision (CV) fields. In
NLP, the introduction of the Transformer model [28] in 2017 further
propelled advancements in this domain. Transformers process input
sequences through an encoder-decoder architecture, generating hidden
representations and output sequences. Its key innovation — multi-head
attention mechanism — allows the model to allocate different attention
weights based on the relevance between words, significantly enhancing
the model’s ability to handle long-term dependencies. Additionally,
the architectural characteristics of Transformers enable high parallel
processing capabilities, achieving exceptional performance improve-
ments across various NLP tasks. In the CV domain, the introduction
of Generative Adversarial Networks (GANs) [29] in 2014 marked a
significant turning point. However, the adversarial training mechanism
between the generator and discriminator makes finding the optimal
balance highly challenging. Subsequent research efforts have focused
on improving model generalization capabilities and the quality of
generated data through structural innovations (e.g., StyleGAN [30])
and loss functions (e.g., WGAN [31]). Inspired by the Transformer
model, researchers developed the Vision Transformer (ViT) [32], en-
abling efficient processing of image-related downstream tasks. More
recently, diffusion generative models [33] have emerged as a cutting-
edge technology for generating high-quality images. They generate data
by gradually introducing and reversing multilevel noise perturbations,
a process of progressive degradation and repair that endows diffusion
models with powerful image generation capabilities.

With the rapid advancement of computational hardware such as
GPUs, distributed training, and cloud computing technologies, large-
scale models based on fundamental units like Transformer, ViT, and
diffusion models, including BERT [34], GPT [35], and stable diffu-
sion [36], have emerged like mushrooms after the rain. However, due
to the Transformer model’s demand for GPU memory being directly
proportional to the square of the sequence length, generative models
based on Transformer require relatively high hardware specifications.
Meanwhile, although diffusion models adopt a progressive strategy
during generation, their efficiency is relatively low. Variational Au-
toencoders (VAE) [37] attempt to generate data close to the original
input by mapping data to a probability distribution and learning its
reconstruction. On this basis, the introduction of Conditional Varia-
tional Autoencoders (CVAE) [38] has made it possible to generate
targeted and supervised images or sequence samples. Compared to
the training challenges of GANs and the high hardware requirements
of Transformer-based models, CVAEs, due to their effectiveness in
precisely modeling data distributions and ease of training, have been
widely used across various application scenarios. Additionally, embed-
ding layers [39] play a central role in handling categorical data within
neural networks, especially indispensable in the process of encoding
vocabulary in NLP tasks. Embedding layers can map various types of
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Nomenclature
EOL End of Life MAPE Mean Absolute
Percentage Error
ECL Equivalent Cycle Life MAE Mean Absolute Error
RCVAE Refined Conditional RMSE Root Mean Square
Variational Error
Autoencoder
LIBs Lithium-ion batteries BMS Battery Management
System
RNN Recurrent Neural RUL Remaining Useful
Networks Lives
CNN Convolutional Neural MLP Multi-layer Fully
Networks Connected Neural
Network
NLP Natural Language GANs Generative
Processing Adversarial Networks
Ccv Computer Vision ViT Vision Transformer
VAE Variational CVAE Conditional
Autoencoders Variational
Autoencoders

categorical data (such as words, characters, or different types of labels)
to dense vectors (i.e., embedding vectors) in high-dimensional space,
effectively revealing complex relationships between categories, such as
semantic similarity.

In this study, we use End of Life (EOL) and Equivalent Cycle Life
(ECL) as supervisory conditions for a generative Al model and develop
the Refined Conditional Variational Autoencoder (RCVAE) by incorpo-
rating an embedding layer into the CVAE framework. Leveraging the
authoritative MIT dataset, we preprocess the data into a quasi-video
format to achieve comprehensive integration of electrochemical data
such as voltage, current, temperature, and charging capacity, which is
then processed by the RCVAE model. Supported by customized training
and inference algorithms, our model can generate detailed and high-
quality electrochemical charging data under supervised conditions.
This approach provides a complete electrochemical dataset, paving
new ways for the artificial synthesis of lithium battery data. Moreover,
the detailed synthetic data can be utilized to calculate various battery
state indicators: the generated charging capacity, for instance, can be
directly normalized to derive the State of Charge (SOC), while other
indicators like State of Health (SOH) can be similarly determined
from voltage and capacity metadata. By generating this fundamental
data, we simplify the calculation of these secondary indicators, offer-
ing new perspectives and possibilities for lithium battery performance
prediction.

The main contributions of this paper are summarized as follows:

1. Introduction of RCVAE: By integrating an embedding layer
into the CVAE, we developed the RCVAE, marking a significant
refinement of the CVAE model. This model is specifically opti-
mized for generating electrochemical data, enabling it to more
accurately capture and reflect key parameters and changes in
battery performance.

2. Introduction of supervised conditions: We propose an innova-
tive approach that utilizes the battery’s expected lifespan (EOL)
and Equivalent Cycle Life (ECL) as conditions for the generative
artificial intelligence (AI) model. The successful implementation
of this method validates its potential in battery performance
prediction and health management, offering new insights for the
development of future battery management systems.

3. Generation of datasets: The dataset is generated in real-time
by RCVAE based on the battery’s ECL and EOL to provide the
required charging data. Compared to traditional open-source
datasets, RCVAE avoids generating unnecessary data, saving disk

space, and features a simple and easy-to-manage structure. The
Encoder and Decoder in RCVAE use a lightweight MLP archi-
tecture, which has low hardware requirements, fast inference
speed, and can quickly generate the needed voltage, current,
temperature, and charging capacity data.

4. Proposed training and inference algorithm: This paper pro-
poses a training and inference algorithm tailored to the genera-
tive tasks in the battery field.

The structure of the paper : Section 2 provides a detailed introduc-
tion to the MIT dataset, including its data sources, types, importance,
and application methods. Section 3 thoroughly explains the applica-
tion process of the RCVAE model in real-world scenarios, specifically
describing the data preprocessing steps and the precise design of the
RCVAE architecture, including the generation process of model input
data, the components of the RCVAE model, and their interactive mech-
anisms. Section 4 presents our experimental results and provides an
in-depth analysis. This section begins with an evaluation of the RCVAE
model’s performance across various tasks, followed by an analysis of
the role of each component in the model and an extensive discussion
and demonstration of the model’s interpretability. Finally, the paper
concludes with a summary of its contents.

2. Source of the data

The dataset used in this study was created by Severson et al.
in 2019 [25], known as the MIT dataset, which has become one of
the most authoritative data sources in this field. This battery dataset
includes 124 batteries, achieving a diversity of battery lifespans by
controlling different charging and discharging current sizes. As shown
in Fig. 1(a), the selected batteries are lithium iron phosphate/graphite
batteries produced by A123 Systems, with a nominal capacity of 1.1
Ah. The cycle number at which the battery’s discharge capacity falls to
80% of its nominal capacity is defined as the EOL for the battery. This
design effectively reflects the variability in battery lifespan observed in
the real world.

The dataset comprises three batches of batteries. Fig. 1(b) displays
the variation in charging voltage for the first battery (identified as
“b3c0”) in the third batch. Battery “b3c0” is chosen as an example
because it exhibits fewer outliers than others, facilitating graphical
presentation. As depicted in Fig. 1(b), the battery voltage changes with
increasing cycle numbers, reflecting the degradation of battery perfor-
mance. Even for the same battery, the voltage data across different
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Fig. 1. Conducts a comprehensive analysis of lithium-ion battery performance: (a) based on the MIT dataset, showing the trend of lithium-ion battery discharge capacity decay over
cycles; (b) displaying the variation in voltage of the “b3c0” battery across different charging cycles, with the voltage decline areas highlighted by black square markers, emphasizing
the voltage decay characteristics during charging; (c) describing the temperature change trend of the “b3c0” battery during charging, reflecting the thermal management status at

different charging stages.

cycles vary with the number of cycles, where the cycle count to some
extent indicates the degree of battery degradation. The variance in
voltage data across different cycles suggests that voltage data from
any cycle can serve as unique features mapping to EOL. Similarly, in
Fig. 1(c), a comparable conclusion can be drawn: temperature data
across different cycles for the same battery show variability, indicating
that temperature data from any cycle can also serve as distinct features
mapping to EOL.

3. Methods

After a detailed introduction of the dataset, this section will fo-
cus on elucidating the complete workflow of RCVAE in generating
electrochemical data. As illustrated in Fig. 2, the workflow begins
with the Battery Management System (BMS), which is responsible for
collecting real-time operational data from the batteries. These raw data
are then transformed into a quasi-video format through a series of
preprocessing steps to enhance data processability. The preprocessed
data are subsequently fed into the RCVAE model for training and to
perform prediction tasks.

3.1. Data preprocessing

For data preprocessing, this study draws on the methodology de-
scribed in the literature [40]. After organizing the samples into a
quasi-video format, each battery generated n samples, resulting in a
total of 124n samples. To reduce randomness in experimental outcomes,
this study shuffles the data at the sample level rather than at the battery
level, meaning that samples from the same battery will not appear

consecutively in the dataset. Following the proportion used in other
studies [40-42], the first 94n samples were allocated to the training
set, with the remaining samples assigned to the test set. Subsequently,
data cleaning and normalization were performed.

Data cleaning refers to the removal of outliers to facilitate the
model’s ability to learn data patterns. Here, we calculate the mean and
standard deviation of the training set and use them to compute the Z-
score of each point in the entire dataset. If the Z-score is too large, the
current point is considered an outlier and should be replaced by the
mean of its neighboring points.

nE &

lz;| =

‘ZT

where x; is the value of the data point, u is the mean of the data, o
is the standard deviation of the data, and 7 is the threshold for outlier
detection.

When normalizing the data, as with data cleaning, to avoid using
global statistics from an unknown dataset (test set), we only use data
from the training set to compute the global statistics, specifically the
min and max values. Based on these values, the features of both the
training and test sets are scaled to the range of —1 to 1 to facilitate
learning patterns. Whether in data cleaning or normalization, the use
of only the global statistics of the training set in this study indicates
that no “data leakage” occurred, making the results more credible.

“Data leakage” refers to a situation in machine learning where the
model unintentionally uses information during training that should not
be available in real scenarios. This leads to the model performing very
well during training but poorly when encountering new data because
it has learned some “answers” it should not have known.
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Fig. 2. Illustrates the technical roadmap for generating high-quality electrochemical data with RCVAE.

Then, the training set was further divided into a new training set
and a validation set at a ratio of 4:1. The reason for creating a new
validation set is to monitor the model’s performance on a controlled
data distribution during training, specifically by observing the valida-
tion loss. This helps determine whether the model has been sufficiently
trained.

Unlike previous studies that used data from the first 10 cycles, this
study uses data from any cycle as samples, as shown in Fig. 3. After data
preprocessing, the data is transformed into a five-dimensional array
that can be processed by 3D Convolutional Neural Networks (3D CNNs).
The first dimension represents the number of samples, the second
dimension represents the number of channels, which indicates three
types of data (voltage, current, temperature), and the third dimension
represents depth, which is added due to the inclusion of charging
capacity data. The number of data points for a single type of data
forms another dimension, which is reshaped into two dimensions and
placed in the height and width directions, forming a five-dimensional
electrochemical feature array, as shown on the left side of Fig. 3.

3.2. RCVAE (Refined Conditional Variational AutoEncoders)

3.2.1. Generating embedding vectors through labels

Before the data is input into RCVAE, all dimensions other than the
number of samples are flattened into sequences. Initially, the data’s
labels are processed through an embedding layer. As demonstrated in

Fig. 1, data with different EOLs exhibit distinct characteristics, and sim-
ilarly, data with different Remaining Useful Lives (RUL) also show their
unique differences. Furthermore, if two batteries have similar lifespans,
their RUL and electrochemical data will also display similarities. The
calculation of RUL follows the formula (2), where EOL represents the
expected lifespan of the battery, and ECL refers to the number of cycles
the battery has already completed. RUL is the difference between EOL
and ECL:

RUL = EOL — ECL 2)

Thus, through EOL and RUL, we can delineate the characteristics of
electrochemical data; in this study, “EOL_ECL” is used as a condition
in RCVAE, serving as the label for this research.

Different “EOL_ECL” combinations form a condition set C =
[c1. €2, ..., x|, where each ¢, represents the nth unique category label y
in the sequence. Before C enters the embedding layer, since “EOL_ECL”
exists in string format, it needs to be converted into integer indices
for numerical computation. The mapping from C to integer indices is
achieved through a lookup table, which can be considered a function
mapping category labels to unique integer indices. This mapping func-
tion can be represented as f : C — {0,1,2,..., N — 1}, where N is the
total number of categories. For any category ¢ € C, its integer index
can be represented as:

i=f@© 3
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Fig. 3. Describes the quasi-video data after preprocessing and the overall architecture of RCVAE.

Here, c is the specific category label. f is the mapping function from
category labels to integer indices. i is the integer index corresponding
to c. Therefore, the integer index sequence converted through the
mapping function f is represented as:

I=[f(c).f(c)soes f(en)] C))

Then, the integer indices I = [i Lodns e N] are passed into the embed-
ding layer, which is also a lookup operation, mapping discrete category
labels into a continuous vector space. Suppose E is the embedding
matrix, i is the integer index of the category label, v is the vector
mapped through the embedding layer, then the embedding operation
can be represented as:

v = E[i] 5)

Here, the size of E is N x D : N is the total number of categories,
i.e., the number of elements in the C set. D is the dimension of
the embedding vector (embedding dim). E[i] represents the row in
the embedding matrix E indexed by i, i.e., the embedding vector
corresponding to index i. Thus:

V =E|ijiy....ixy| = [E[i1] . E [iz] ..., E [in]] (6)

3.2.2. Forward propagation of RCVAE

The flow of preprocessed data within RCVAE is divided into several
steps. Input: Initially, the embedding vectors V' (representing processed
labels or other categorical information) and the feature data X (the
actual features of the input data) are concatenated to form a combined
feature vector. This vector is then jointly input into the encoder. The
dimensions of the embedding vector V' and the feature data X are d,
and dy, respectively. The concatenation process can be represented as:

X combined = concat(V, X) )

Here, concat (-,)denotestheconcatenationoperation,aligningV and X in
sequence to form a new combined feature vector with dimensions
dy + dy. This combined feature vector X ., pinea Subsequently serves
as the input for the encoder. The purpose of this step is to merge the
label or category information related to the input data (represented by
the embedding vector V) with the actual feature data X, to consider
both aspects of information in the ensuing encoding process. Thus,
integrating the embedding vector and feature data into a unified input
lays the groundwork for subsequent encoder processing.

The encoder learns the distribution parameters (namely, mean u
and variance ¢?) of the latent representation of the input data x and
associated condition y. This can be expressed as the mean u(x,y) and
variance ¢2(x, y) :

”(x’ y) = fy (Xcombined ) (8)
10g ((72(’(’ Y)) = fc (Xcombined ) (9)

Functions f, and f, are implemented by multi-layer fully connected
neural networks, designed to extract the mean and the logarithm of the

variance from the input data. Here, the number of layers in the multi-
layer fully connected neural network (MLP) is set as a hyperparameter
and is not fixed. In the MLP, each layer applies a linear transformation
and a nonlinear activation function to the output of the previous layer.
Let L be the total number of layers in the network; for each layer
I =1,2,..., L, linear transformations and nonlinear activations can be
represented as follows:

hy=W,-ap, +b, 10
a = f (k) an

W, and b, are the weight and bias of the / th layer, respectively,
and f is the nonlinear activation function. For the first layer, a, =
X combined » Meaning the combined feature vector serves as the input
to the network. Ultimately, the mappings for the mean u(x,y) and
the logarithm of the variance log (¢%(x,)) can be represented by the
output of the last layer. Assuming that the calculations for the mean
and the logarithm of the variance are derived from the network’s
last two output layers respectively, then the calculation for the mean
u(x,y) can be represented as: u(x,y) = W, - a + b,. The calculation
for the logarithm of the variance log (c%(x, y)) can be represented as:
log (6*(x,y)) = W, -ay +b,. Here W, and b, as well as W, and b,, are
the weights and biases of the last two output layers specifically used for
calculating the mean and the logarithm of the variance, with a; being
the activation output of the last hidden layer. By this means, setting
an MLP as a network with any number of layers allows for flexible
adaptation to different complexities in model design requirements.

Next is the sampling of the latent representation: After obtaining
the mean u(x, y) and variance ¢?(x, y), the latent representation z(x, y)
can be sampled from the corresponding Gaussian distribution using the
reparameterization trick:

2(x,y) = pu(x,y) + € - y[exp (log (62(x, ) ) = pu(x,y) + 6(x,) - € 12)

where e is noise sampled from the standard normal distribution N'(0, I).
This method allows the encoder not only to output the mean and
variance of the latent representation of the input data under specific
conditions but also to generate diverse outputs by introducing random
noise ¢, a key characteristic of variational autoencoder generative mod-
els. In summary, the encoder operation learns to map the combination
of input features and condition information to the distribution param-
eters of the latent space, generating the latent representation z(x,y)
through these parameters plus random noise. This process provides
the foundation for the subsequent decoder to reconstruct the input or
generate new data.

Preparation of Decoder Input: Before the latent variable z(x,y) is
input into the decoder, it needs to be concatenated with the correspond-
ing embedding vector V(y) to form the decoder’s input vector. This can
be represented by the following equation:

Xdecoder = concat(z(x, y), V(y)) 13)

By concatenating the latent variable z(x,y) and the embedding
vector V(y) in sequence, a new vector Xgecoqer iS formed, which is
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then used as the input to the decoder. In this way, the decoder not
only receives the latent representation mapped from the input data x
and condition y but also integrates additional information about the
condition y, enabling the decoder to generate target samples match-
ing the input data under supervision while considering the condition
information y. This combination of latent representation and condi-
tion information is one of the key features distinguishing CVAE from
standard VAE.

Decoder Operation: The concatenated vector X gecoqer (@ fusion of
latent representation and label information) is inputted, and the target
samples matching the input data are generated. It can be represented
as:

Xreconstructed =8 (Xdecoder ) (14)

Here: g(-) is the function of the decoder, implemented through an
MLP, aiming to learn how to reconstruct data from the latent space.
This function is similar to that of the encoder and will not be re-
iterated here. X econstructed 1S the reconstructed data output by the
decoder, intended to resemble the original input data x as closely as
possible, while considering the condition information y. The learning
objective of the decoder is to maximize the data likelihood given the
latent representation and condition information, i.e., to maximize p(x |
z(x,y), V(y)). By optimizing this objective, the decoder can generate
target samples that match the original input data and consider the
condition information. Specifically for the application of generating
electrochemical samples, this means the decoder has learned how to
generate new electrochemical samples that meet these conditions based
on given electrochemical conditions and corresponding feature data.
The forward propagation algorithm of RCVAE is shown as Algorithm 1.

Algorithm 1 Forward Propagation Algorithm of RCVAE

Input: Feature data x and label y.

Output: Generated electrochemical sample by RCVAE.

Step 1: Embed label y into V(y) by Eq. (6).

Step 2: Concat x and V(y) into one vector by Eq. (7).

Step 3: Encode to latent space, get mean and variance by Eqs(8)-(9).
Step 4: Sample latent variable z(x, y) using mean and variance by
Eq. (12).

Step 5: Concat z(x, y) and V() for decoder by Eq. (13).

Step 6: Decoder generates sample by Eq. (14).

Return: Generated electrochemical sample by RCVAE.

3.2.3. Training and evaluation of algorithm

It should be noted that the embedding space for labels is determined
based on the labels in the training set. However, the labels in the test set
may not directly correspond to the embedding space of the training set.
For such test samples, their labels undergo preliminary preprocessing
through a similarity strategy. Specifically, the similarity of the test
set labels is calculated using the difference formula (15). By iterating
through each label in the training set and calculating the distance to the
test label, the label with the smallest distance is selected as the new test
label. Subsequent processing steps are similar to those described earlier
and are not detailed here.

distance = weight - |EOL; — EOL,| + (1 — weight) - |ECL, — ECL,| (15)

As shown in Algorithm 2, the training and inference process of
RCVAE begins with the hyperparameter tuning stage, where the best
hyperparameters are selected using the Bayesian optimization algo-
rithm based on the performance on the validation set. The final hy-
perparameters are listed in Table 1.

Compared to the unstable method of setting hyperparameters based
on personal subjective experience, all hyperparameters in this study
were determined through automatic selection using the Bayesian op-
timization algorithm. This preparation ensures that the model can be
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Table 1
Hyperparameters for the model.
Parameter Value
Batch size 64
Learning rate 3.1138e-05
Betal 0.16012168351168404
T_max 78
Weight decay 0.023010888504871155
Patience 65
Step size 1
Gamma 0.09501282296926236

Warmup epochs
Leaky slope

Gradient clip

Alpha RMSprop

Final layer size

Total layers
Embedding dimension
Life weight

Leaky slope (Encoder)
Leaky slope (Decoder)
Latent size

Scheduler type
Optimizer type

Linear mode

Apply weights Init
Use batch norm

89
0.15627772069234497
741.0420754928822
0.6132744782992872
642

16

473
0.5572459533596918
0.8714833687494885
0.20404608524012796
50

ReduceLROnPlateau
RAdam

fan_in

True

True

well-trained. During the model training phase, to thoroughly learn the
sample data, the validation set is merged with the training set to form
a new training set on which the model is trained. This allows the model
to learn as much data pattern as possible without causing data leakage.
The total loss during the training process is obtained by combining the
Mean Squared Error (MSE (16)) and the Kullback-Leibler Divergence
(KLD (17)), as shown in Eq. (18).
K
MSE= = ¥ (x - &)’ a6)
i=1
Here, K is the total number of samples in the batch, x; is the i th
element of the original input data, and %; is the i th element of the
reconstructed data.

J
__1 2 2_ 2
KLD——EZI(l+log<6j)—/4j—oj) a7
j=
where J is the dimension of the latent space, x; and aj? are the mean
and variance of the j th latent variable, respectively.

Loss = MSE + K—II;D (18)

In this section, normalizing by K ensures that the loss does not
change with the size of the sample set, thereby making the training
results comparable across different sample sizes. To ensure the model is
thoroughly trained while maintaining efficiency, 1000 training epochs
are set, along with an early stopping mechanism, where the early
stopping counter is set to 100. This means that if the loss (Eq. (19))
on the validation set does not decrease for 100 consecutive training
epochs, the training is terminated. If the model’s performance does not
improve over time, training is stopped promptly, and the best model
is saved, which significantly speeds up the training process. During the
model performance testing phase, the model’s predictive performance is
evaluated for the first time using the test set data. To comprehensively
evaluate the model’s predictive ability, this study uses MAE and RMSE
as evaluation metrics, with their respective mathematical expressions
defined in Egs. (19) and (20).

K
1 o
MAE = z gl‘ |x; — %] 19)

(20)
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where K is the total number of samples. x; is the ith element of the
original data. %; is the ith element of the reconstructed data.

Algorithm 2 Training and Evaluation of Algorithm

Input: The training set, validation set, and test set.

Output: Trained Model, Test Loss

Step 1: Optimize hyperparameters using Bayesian optimization.
Step 2: Concatenate the training and validation sets to form a new
training set.

Step 3: Set the hyperparameters found to be optimal in the previous

steps.
Do
Counter = 0.
Repeat
Outer Loop for multiple epochs:
Do

Forward Propagation:
Step 4: Compute training loss by Eq. (18) and
validation loss by Eq. (19).
Backward Propagation:
Step 5: Calculate gradients based on the training loss.
Step 6: Update network parameters.
Step 7: If validation loss decreases, save the model and
Counter = 0.
Otherwise, Counter = Counter + 1.
Step 8: If Counter exceeds a predefined threshold, trigger
early stopping.
End
Until reaching a predefined number of epochs or early stopping
is triggered.
End
Step 9: Save the model, Load the model.
Step 10: Forward Propagate on the test set to compute the test loss
by Egs. (19)-(20).
return Trained Model, Test Loss

4. Results and discussion
4.1. Generative results of RCVAE

This study aims to explore the impact of dataset size on the per-
formance of the RCVAE model in generating electrochemical data.
By analyzing the model’s behavior with different amounts of early-
cycle data, we observed some interesting trends. Due to the values of
certain data types approaching zero in some cases, the Mean Absolute
Percentage Error (MAPE) exhibited significant instability, suggesting
that MAPE might not be an appropriate evaluation metric. As shown
in Table 2, for voltage prediction, the Mean Absolute Error (MAE)
fluctuated between 0.021 and 0.023 V, while the Root Mean Square
Error (RMSE) ranged from 0.043 to 0.047 V. In predicting the current
rate, the MAE values ranged between 0.268 and 0.286, and the RMSE
values varied from 0.66 to 0.741, demonstrating consistently high
accuracy. For temperature prediction, MAE values were between 0.374
and 0.414 °C, with RMSE values ranging from 0.698 to 0.779 °C,
all indicating the model’s high precision. The predictions for charging
capacity were equally encouraging, with MAE values between 0.019
and 0.021 Ah, and RMSE values from 0.038 to 0.044 Ah, showcasing
the model’s precise capture of changes in battery charging capacity. To
comprehensively evaluate the model’s performance in generating data
for voltage, current rate, temperature, and charging capacity, the error
metrics for these four data types were considered together, resulting in
a total MAE value between 0.12 and 0.129, RMSE values maintained
between 0.397 and 0.441, and KLD values between 0.004 and 0.011.

To further explore the generative capabilities of RCVAE, Figs. 4
and 5 display electrochemical data samples generated by the RCVAE
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model trained with different amounts of early-cycle data. These samples
were randomly selected from the corresponding test sets. By speci-
fying certain supervised conditions (EOL+ECL), the model is capable
of generating the corresponding electrochemical data. For example,
Fig. 4(a) shows the high consistency between the voltage, temperature,
and charging capacity data generated by the RCVAE trained on the
first 10 cycles and the original data, with R? values reaching at least
0.9754. For the current rate, although the quality of the generated
data was slightly lower compared to other data types, the R? value
was still 0.8546; Fig. 4(b) demonstrates that the data generated by the
RCVAE trained on the first 20 cycles closely matches the original data
in terms of voltage, current rate, temperature, and charging capacity,
with R? values of at least 0.9743; In Fig. 4(c), data generated by the
RCVAE trained with the first 30 cycles accurately reflects the original
data, with R® values of at least 0.7421; As shown in Fig. 4(d), the
voltage, temperature, and charging capacity data generated by the
RCVAE trained with the first 40 cycles closely align with the original
data, with R? values of at least 0.9185; Fig. 4(e) illustrates that the
data generated by the RCVAE trained with the first 50 cycles almost
perfectly matches the original data in terms of voltage, current rate,
temperature, and charging capacity, with R? values of at least 0.9457.
Fig. 5 shows the generative ability of RCVAE for individual samples
using data from the first 60 to 100 cycles, similar to the results in Fig. 4,
which will not be repeated here. Overall, RCVAE demonstrates good
performance in generating various electrochemical data. Compared to
traditional regression and classification algorithms, RCVAE provides
more comprehensive electrochemical information. However, there is
still room for improvement in the quality of the generated current
rate data. This may be because current rate data is highly discrete,
forming step-like patterns that are not smoothly continuous, making
it challenging for machine learning to capture such patterns through
mathematical rules. Conversely, the model shows stable and excellent
ability to learn continuous data patterns, as seen in the figures.

To delve deeper into the variations in the generative capability of
the RCVAE model with different amounts of early-cycle data, this study
conducted a detailed visualization of error data, as shown in Fig. 6.
In Fig. 6(a), the capability of the RCVAE to generate voltage data
across varying early-cycle data amounts is displayed, where the MAE
slightly exceeds 0.02 V, and the RMSE slightly exceeds 0.04 V. Fig. 6(b)
presents the RCVAE’s ability to generate current rate data across dif-
ferent early-cycle data volumes, with the MAE values consistently less
than 0.3 and the RMSE slightly over 0.6. In Fig. 6(c), we observe the
RCVAE’s capacity to generate temperature data with varying early-
cycle data amounts, where the MAE values remain around 0.4 °C,
and the RMSE is below 0.8 °C. Finally, Fig. 6(d) shows the RCVAE’s
ability to generate charging capacity data across different early-cycle
data amounts, with MAE values fluctuating around 0.02 Ah, and RMSE
values around 0.04 Ah.

Fig. 6(e) displays a summary of errors for various types of elec-
trochemical charging data generated by the RCVAE across different
amounts of early-cycle data. In all cases, the MAE remains below
0.2, while the RMSE slightly exceeds 0.4. Overall, the variation in
MAE across different early-cycle data amounts is minimal, while RMSE
reaches its peak when the early-cycle count is at 100. In this scenario,
we further demonstrate the generative capability of the trained RCVAE
model. By randomly selecting a condition (i.e., label) from the test
set, the corresponding electrochemical charging data was successfully
generated.

The dimensions of the generated features are: (n,channels, depth,
height, width), specifically (n, 3, 2,20, 20), where n represents the num-
ber of samples. Due to the high dimensionality, direct visualization is
not feasible, so a slicing approach is applied along the depth dimension.
To illustrate and present more generated samples, the charging capacity
data is scaled and displayed as grayscale images. Although there are 3
channels representing red, green, and blue, the channels sliced from
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Table 2

Results of electrochemical data generated by RCVAE.
Data type vV (V) 1 T (°C) Qc (Ah) Total
Error type MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE KLD
10 (Cycles) 0.022 0.043 0.27 0.66 0.399 0.706 0.02 0.038 0.125 0.397 0.006
20 (Cycles) 0.023 0.044 0.285 0.683 0.391 0.737 0.021 0.04 0.127 0.413 0.005
30 (Cycles) 0.023 0.046 0.286 0.732 0.405 0.777 0.021 0.042 0.129 0.438 0.005
40 (Cycles) 0.021 0.043 0.269 0.685 0.374 0.698 0.019 0.038 0.12 0.402 0.004
50 (Cycles) 0.022 0.046 0.281 0.741 0.395 0.748 0.021 0.044 0.127 0.432 0.004
60 (Cycles) 0.022 0.046 0.281 0.734 0.413 0.773 0.02 0.042 0.129 0.437 0.006
70 (Cycles) 0.022 0.046 0.275 0.738 0.407 0.766 0.02 0.043 0.127 0.437 0.008
80 (Cycles) 0.022 0.045 0.271 0.72 0.404 0.764 0.019 0.043 0.126 0.431 0.011
90 (Cycles) 0.021 0.044 0.268 0.721 0.396 0.75 0.019 0.041 0.124 0.427 0.006
100 (Cycles) 0.022 0.047 0.279 0.739 0.414 0.779 0.02 0.043 0.129 0.441 0.01
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Fig. 4. Displays the voltage, current, temperature, and charging capacity data generated by RCVAE trained with data from different cycles: (a) the first 10 cycles; (b) the first 20
cycles; (c) the first 30 cycles; (d) the first 40 cycles; (e) the first 50 cycles.
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Fig. 5. Displays the voltage, current, temperature, and charging capacity data generated by RCVAE trained with data from different cycles: (a) the first 60 cycles; (b) the first 70

cycles; (c) the first 80 cycles; (d) the first 90 cycles; (e) the first 100 cycles.

this depth are identical (charging capacity, charging capacity, charging
capacity), resulting in a grayscale image.

Another depth slice corresponds to the channels (voltage, current
rate, temperature), where the voltage, current rate, and temperature data
are combined and similarly scaled to be displayed in the form of RGB
images.

Taking the grayscale images as an example, the first row displays
the generated charging capacity data, while the second row shows
the original charging capacity data. Each subplot is labeled at the
bottom left with the battery number, EOL, and ECL. Above each pair of
generated and original images, the SSIM (Structural Similarity Index)
is indicated. SSIM is a measure used to assess the similarity between
two images and is widely applied in the fields of image processing and
computer vision. The calculation formula for the Structural Similarity

10

Index (SSIM) is as follows:
2”)( Hy + Cl
2+ /43 +C;

20,,+C, 1)

SSIM(x, y) = < ) - ( >
where: x and y are local windows of the two images. u, and u, are the
mean values of the two images within the window. ¢ and o2 are the
variances of the two images within the window. ¢, is the covariance of
the two images within the window. C; and C, are two constants used
to prevent division by zero.

It can be observed that the SSIM values for each pair of generated
and original images range between 0.987 and 0.999, indicating that
the generated grayscale images, specifically the charging capacity data,
are of high quality. The results show that the RCVAE can accurately
generate corresponding high-quality charging capacity data for any
specified EOL and ECL. The RGB images composed of voltage, current,

21 g2
0'X+0'y+C2
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Fig. 6. Shows the statistical distribution of errors for different types of electrochemical data generated by RCVAE under various early-cycle conditions: (a) voltage error distribution,
(b) current rate error distribution, (c) temperature error distribution, (d) charging capacity error distribution, and (e) a comprehensive summary of errors for all types of

electrochemical data.

and temperature also demonstrate similar compatibility; due to space
constraints, they are not elaborated here. The number of generated
samples shown is limited. To more comprehensively demonstrate the
generative capabilities of the RCVAE, Figures S1-S4 present more
details of the samples generated by the RCVAE trained with different
amounts of early-cycle data.

4.2. Analysis of the role of each component in the model

To gain a deeper understanding of the contribution of each com-
ponent in the RCVAE, a series of ablation experiments were con-
ducted. “Ablation experiments” in machine learning involve removing
or modifying certain parts of the model to observe their impact on
the model’s performance, thereby identifying which components are
crucial. Fig. 7(a) illustrates the changes in error when generating volt-
age data after removing different layers of the model. “Decn”, “Encn”,
“Emb”, and “None” represent scenarios where specific layers of the
decoder, encoder, the embedding layer were removed, and the standard
RCVAE model without any modifications, respectively. Additionally,
the numbers following “Dec” and “Enc” indicate the specific number of
layers removed. Given the critical roles of the first layer of the encoder
and the last layer of the decoder, the experimental results show that
even after removing any fully connected layer other than these two,
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the model’s performance in generating voltage data remains excellent,
demonstrating its high robustness due to the large number of layers.
Notably, removing the embedding layer significantly increases the MAE
of the generated data, with the MAE at least doubling (0.044-0.052 V)
under various early data training conditions; when trained with data
from the first 10-30 cycles, the MAE rose to 0.05 V or higher.

Fig. 7(b) shows the RMSE in generating voltage data, with trends
similar to those of MAE. Given the model’s architecture with multiple
fully connected layers in both the encoder and decoder, even after re-
moving one fully connected layer, the model’s generative performance
remains good, demonstrating its excellent robustness. However, the im-
portance of the embedding layer is evident, as its removal significantly
increases the RMSE of the generated data (0.061-0.078 V), especially
under the training conditions of the first 10-30 cycles, where the RMSE
(0.074-0.078 V) nearly doubles. Additionally, Figures S5-S7 present
the heatmaps of MAE and RMSE for the ablation experiments of current
rate, temperature data, and charging capacity data, respectively.

Additionally, Table 3 provides a detailed summary of the errors in
the voltage and current rate data generated by the RCVAE after training
with the first 100 cycles of data, as well as the weighted errors for
all data types, which are consistent with previous observations. The
ablation experiments for voltage and current rate (Table S1), along
with those for temperature and charging capacity (Table S2), offer
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Fig. 7. Reveals the results of ablation experiments on RCVAE in generating voltage data.

comprehensive data across different volumes of early-cycle data, once
again highlighting the critical role of the embedding layer. These tables
fully confirm that the embedding layer is indispensable for maintaining
the model’s capability to generate high-quality data in the tasks of
generating voltage, current rate, temperature, and charging capacity
data.

4.3. Learning outcomes of the embedding layer

After discussing the importance of the embedding layer in generat-
ing electrochemical data in RCVAE in the previous section, this section
further explores the working mechanism of the embedding layer and
explains it through the visualization of the learned results. Fig. 8 shows
the distribution of weights learned in the embedding layer. Given the
numerous conditional categories resulting from the combination of EOL
and ECL, the dimension of the embedding vectors is relatively high
(embedding dim = 473). To simplify the presentation, we first use t-
SNE [43] to reduce the dimensionality of the embedding vectors to a
two-dimensional space, followed by clustering analysis using the KNN
algorithm [44].

Fig. 8(a) presents the clustering results of the embedding vectors
after the model was trained with data from the first 10 cycles. Each
cluster is annotated with two values: the average EOL and the average
ECL within the cluster. Given that the model is trained on data from
the first 10 cycles, the ECL represented in the clusters is generally
around 5 or 6, which aligns with the actual variation patterns of
electrochemical data in batteries: samples with different EOLs exhibit
significant differences in electrochemical data. If the EOL is similar and
the ECL is close, the variation in the battery’s electrochemical data
is smaller, showing a gradual change, as demonstrated and validated
in Fig. 1(a). In other words, under the conditions formed by both
EOL and ECL in the sample generation process, EOL plays a leading
role, while ECL acts as an auxiliary modulator. It can be observed
that different conditions, mainly EOL, with approximate values, are
clustered together.

Fig. 8(b) shows the distribution of embedding vectors after the
model was trained with data from the first 20 cycles. Compared to
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Table 3
Ablation Experiment Results of RCVAE trained with data from the first 100 cycles.
Detach MAE RMSE MAE_V (V) RMSE_V (V) MAE I RMSE I
Decoder_1 0.125 0.432 0.022 0.046 0.274 0.732
Decoder_2 0.127 0.433 0.022 0.046 0.276 0.733
Encoder_2 0.125 0.433 0.022 0.046 0.272 0.732
Decoder_3 0.126 0.436 0.022 0.046 0.272 0.736
Encoder_3 0.125 0.436 0.022 0.046 0.272 0.737
Decoder_4 0.125 0.434 0.022 0.046 0.27 0.733
Encoder_4 0.127 0.435 0.022 0.046 0.277 0.73
Decoder_5 0.125 0.436 0.022 0.046 0.272 0.739
Encoder 5 0.126 0.437 0.022 0.046 0.274 0.737
Decoder_6 0.127 0.435 0.022 0.046 0.275 0.731
Encoder_6 0.126 0.436 0.022 0.046 0.273 0.739
Decoder_7 0.127 0.434 0.022 0.046 0.277 0.731
Encoder_7 0.124 0.427 0.022 0.045 0.269 0.724
Decoder_8 0.125 0.437 0.022 0.046 0.27 0.736
Encoder_8 0.126 0.438 0.022 0.046 0.275 0.735
Decoder 9 0.125 0.44 0.022 0.046 0.269 0.743
Encoder 9 0.125 0.432 0.022 0.046 0.272 0.731
Decoder_10 0.127 0.44 0.022 0.046 0.272 0.74
Encoder_10 0.127 0.439 0.022 0.046 0.275 0.742
Decoder_11 0.126 0.437 0.022 0.046 0.274 0.741
Encoder_11 0.128 0.435 0.022 0.046 0.279 0.737
Decoder_12 0.124 0.434 0.022 0.046 0.267 0.737
Encoder_12 0.127 0.434 0.022 0.046 0.28 0.732
Decoder_13 0.125 0.437 0.022 0.046 0.271 0.737
Encoder_13 0.128 0.44 0.022 0.047 0.278 0.741
Decoder_14 0.128 0.435 0.022 0.046 0.279 0.73
Encoder_14 0.127 0.44 0.022 0.047 0.274 0.744
Decoder_15 0.124 0.438 0.022 0.046 0.267 0.743
Encoder_15 0.125 0.435 0.022 0.046 0.269 0.735
Encoder_16 0.127 0.438 0.022 0.047 0.277 0.739
None 0.129 0.439 0.022 0.046 0.277 0.737
Embedding 0.304 0.653 0.045 0.062 0.664 0.97

training with only the first 10 cycles, the number of labels has doubled,
leading to a significant change in the distribution of the embedding
vectors. The range of average EOL values across different clusters (138
= 892-754) has become more compact compared to the range during
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Fig. 8. Presents the learning outcomes of the RCVAE embedding layer trained with data from different cycles: (a) the first 10 cycles; (b) the first 20 cycles; (c) the first 30 cycles;

(d) the first 40 cycles; (e) the first 50 cycles; (f) the first 60 cycles; (g) the first 70 cycles;

the first 10 cycles (178 = 919-741). Meanwhile, the differences in ECL
within clusters (from 1 = 6-5 to 3 = 12-9) have not changed signif-
icantly. This suggests that the dominant effect of EOL has weakened,
and the aggregation of similar EOL values has decreased, resulting in
the enhanced auxiliary role of ECL.

Fig. 8(c) shows the distribution of embedding vectors after the
model was trained with data from the first 30 cycles. Compared to
training with only the first 10 cycles, the number of labels has tripled,
leading to a noticeable change in the distribution of the embedding
vectors. The range of average EOL values across different clusters (114
= 875-761) has become more compact compared to the range during
the first 10 cycles (178 = 919-741) and the EOL range for the first
20 cycles (138 = 892-754). Although the ECL difference (1 = 16—
15) did not increase compared to the ECL difference in the first 10
cycles (from 1 = 6-5), the range of EOL values (114 = 875-761)
decreased significantly compared to (178 = 919-741), indicating that
the effect of EOL is still weakening while the auxiliary role of ECL is
further strengthened. It is noteworthy that two clusters both have labels
(845, 16). Although these two clusters are relatively close in distance,
they still have some separation, which may be due to some loss of
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(h) the first 80 cycles; (i) the first 90 cycles.

information during dimensionality reduction using t-SNE, leading to a
slight decrease in accuracy.

Fig. 8(d)-(i) show the distribution of RCVAE’s supervised condi-
tions when using data from the first 40-90 cycles, where the extreme
differences in EOL values within different clusters have significantly de-
creased compared to earlier stages. However, the extreme differences in
ECL have relatively increased. This pattern is consistent with the trends
observed in Fig. 8(a)-(c), indicating that as the number of early cycles
used increases, the aggregation of similar EOL values decreases, the in-
fluence of EOL in guiding data generation under supervision gradually
weakens, while the role of ECL in the conditions gradually strengthens.
Figure S6 shows the distribution of embedding layer weights for RCVAE
trained with data from the first 100 cycles, maintaining consistency
with the patterns observed in Fig. 8. These findings suggest that under
different data distribution scenarios, the combination of EOL and ECL
as strings effectively work together to adapt to different scenario needs,
effectively guiding the generation of electrochemical data. This further
highlights the importance of the embedding layer and the supervised
condition settings in this study, as well as their central role in the
RCVAE model.
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5. Conclusion

By integrating the embedding layer into the CVAE model, this study
successfully developed the RCVAE, specifically designed to enhance
the generative capability for electrochemical data. The study employed
a quasi-video data preprocessing method that effectively integrates
different types of electrochemical data (such as voltage, current, tem-
perature, and charging capacity) as input for the RCVAE. In this work,
EOL and ECL are defined as supervisory conditions for the generative
artificial intelligence, and in combination with customized training and
inference algorithms, the RCVAE generates the required charging data
in real-time based on the battery’s ECL and EOL, avoiding storage of
irrelevant information and saving space and resources. Additionally,
the RCVAE employs a lightweight architecture, offering fast generation
speeds to quickly provide the required voltage, current, temperature,
and charging capacity data.

Experimental results confirm that the RCVAE can accurately gen-
erate various types of charging data. When trained under conditions
with different amounts of early-cycle data, the RCVAE demonstrates
outstanding capability in generating electrochemical data. Taking volt-
age data as an example, when using data from the first 10 to the first
100 cycles as the training set, the MAE values were 0.022, 0.023, 0.023,
0.022, 0.022, 0.022, 0.022, 0.022, 0.021, 0.022 V respectively; the
RMSE values were 0.042, 0.045, 0.045, 0.043, 0.046, 0.045, 0.046,
0.045, 0.045, 0.046 V respectively. The ablation experiments on RCVAE
revealed the model’s high robustness, as its performance remained
stable even after removing a layer. Notably, a significant drop in
generative performance occurred after removing the embedding layer,
highlighting the importance of this improvement to the CVAE model.

Further analysis of the learning outcomes of the embedding layer re-
iterated its critical role and the significance of combining EOL and ECL
as supervisory conditions. Given the similarity in data characteristics
observed in other tasks, this suggests that the RCVAE has the potential
for broad applications across a wider range of fields.
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